Handbook of Causal Analysis for Social Research
Title | Handbook of Causal Analysis for Social Research PDF eBook |
Author | Stephen L. Morgan |
Publisher | Springer Science & Business Media |
Pages | 423 |
Release | 2013-04-22 |
Genre | Social Science |
ISBN | 9400760949 |
What constitutes a causal explanation, and must an explanation be causal? What warrants a causal inference, as opposed to a descriptive regularity? What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of these effects? What complications do the interactions of individuals create for these techniques? When can mixed methods of analysis be used to deepen causal accounts? Must causal claims include generative mechanisms, and how effective are empirical methods designed to discover them? The Handbook of Causal Analysis for Social Research tackles these questions with nineteen chapters from leading scholars in sociology, statistics, public health, computer science, and human development.
Causal Inference
Title | Causal Inference PDF eBook |
Author | Miquel A. Hernan |
Publisher | CRC Press |
Pages | 352 |
Release | 2019-07-07 |
Genre | Medical |
ISBN | 9781420076165 |
The application of causal inference methods is growing exponentially in fields that deal with observational data. Written by pioneers in the field, this practical book presents an authoritative yet accessible overview of the methods and applications of causal inference. With a wide range of detailed, worked examples using real epidemiologic data as well as software for replicating the analyses, the text provides a thorough introduction to the basics of the theory for non-time-varying treatments and the generalization to complex longitudinal data.
Causal Analysis with Panel Data
Title | Causal Analysis with Panel Data PDF eBook |
Author | Steven E. Finkel |
Publisher | SAGE |
Pages | 108 |
Release | 1995-01-17 |
Genre | Medical |
ISBN | 9780803938960 |
Panel data, which consist of information gathered from the same individuals or units at several different points in time, are commonly used in the social sciences to test theories of individual and social change. This book provides an overview of models that are appropriate for the analysis of panel data, focusing specifically on the area where panels offer major advantages over cross-sectional research designs: the analysis of causal interrelationships among variables. Without "painting" panel data as a cure all for the problems of causal inference in nonexperimental research, the author shows how panel data offer multiple ways of strengthening the causal inference process. In addition, he shows how to estimate models that contain a variety of lag specifications, reciprocal effects, and imperfectly measured variables. Appropriate for readers who are familiar with multiple regression analysis and causal modeling, this book will offer readers the highlights of developments in this technique from diverse disciplines to analytic traditions.
Statistical Approaches to Causal Analysis
Title | Statistical Approaches to Causal Analysis PDF eBook |
Author | Matthew McBee |
Publisher | SAGE |
Pages | 178 |
Release | 2022-03-01 |
Genre | Social Science |
ISBN | 1529711118 |
This book provides an up-to-date and accessible introduction to causal inference in quantitative research. Featuring worked example datasets throughout, it clearly outlines the steps involved in carrying out various types of statistical causal analysis. In turn, helping you apply these methods to your own research. It contains guidance on: Selecting the most appropriate conditioning method for your data. Applying the Rubin’s Causal Model to your analysis, a mathematical framework for understanding and ensuring accurate causation inferences. Utilising various techniques and designs, such as propensity scores, instrumental variables analysis, and regression discontinuity designs, to better synthesise and analyse different types of data. Part of The SAGE Quantitative Research Kit, this book will give you the know-how and confidence needed to succeed on your quantitative research journey.
Causal Analysis
Title | Causal Analysis PDF eBook |
Author | Lawrence R. James |
Publisher | SAGE Publications, Incorporated |
Pages | 184 |
Release | 1982-10 |
Genre | Business & Economics |
ISBN |
This book focuses specifically on confirmatory analysis - a quantitative technique used to illuminate causal relationships among organizational phenomena. The authors outline the conditions that must be met if causal inferences are to be drawn from nonexperimental data, and offer new tests for determining whether data meet those conditions. While analytic models and techniques of confirmatory analysis are stressed here, the authors also emphasize the importance of strong, well-developed theory as a prerequisite to the appropriate application of these powerful (but easily misused) tools.
The SAGE Handbook of Regression Analysis and Causal Inference
Title | The SAGE Handbook of Regression Analysis and Causal Inference PDF eBook |
Author | Henning Best |
Publisher | SAGE |
Pages | 425 |
Release | 2013-12-20 |
Genre | Social Science |
ISBN | 1473908353 |
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
Causal Inference
Title | Causal Inference PDF eBook |
Author | Scott Cunningham |
Publisher | Yale University Press |
Pages | 585 |
Release | 2021-01-26 |
Genre | Business & Economics |
ISBN | 0300255888 |
An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.