Categorification in Geometry, Topology, and Physics
Title | Categorification in Geometry, Topology, and Physics PDF eBook |
Author | Anna Beliakova |
Publisher | American Mathematical Soc. |
Pages | 282 |
Release | 2017-02-21 |
Genre | Mathematics |
ISBN | 1470428210 |
The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorification is a powerful tool for relating various branches of mathematics and exploiting the commonalities between fields. It provides a language emphasizing essential features and allowing precise relationships between vastly different fields. This volume focuses on the role categorification plays in geometry, topology, and physics. These articles illustrate many important trends for the field including geometric representation theory, homotopical methods in link homology, interactions between higher representation theory and gauge theory, and double affine Hecke algebra approaches to link homology. The companion volume (Contemporary Mathematics, Volume 683) is devoted to categorification and higher representation theory.
Categorification in Geometry, Topology, and Physics
Title | Categorification in Geometry, Topology, and Physics PDF eBook |
Author | Anna Beliakova |
Publisher | |
Pages | 267 |
Release | 2012 |
Genre | Algebra, Homological |
ISBN | 9781470436919 |
9.1. Uncolored trefoil-prime -- 9.2. Colored/iterated examples -- 9.3. Generalized twisting -- 9.4. Some examples -- 9.5. Toward the Skein -- Appendix A. Links and splice diagrams -- A.1. Links, cables and splices -- A.2. Splice diagrams -- A.3. Operations on links -- A.4. Equivalent diagrams -- A.5. Connection with DAHA -- References -- Back Cover
Applications Of Contact Geometry And Topology In Physics
Title | Applications Of Contact Geometry And Topology In Physics PDF eBook |
Author | Arkady L Kholodenko |
Publisher | World Scientific |
Pages | 492 |
Release | 2013-05-03 |
Genre | Mathematics |
ISBN | 9814412104 |
Although contact geometry and topology is briefly discussed in V I Arnol'd's book “Mathematical Methods of Classical Mechanics ”(Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges “An Introduction to Contact Topology” (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph “Contact Geometry and Nonlinear Differential Equations” (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text.
Higher Genus Curves in Mathematical Physics and Arithmetic Geometry
Title | Higher Genus Curves in Mathematical Physics and Arithmetic Geometry PDF eBook |
Author | Andreas Malmendier |
Publisher | American Mathematical Soc. |
Pages | 234 |
Release | 2018-04-03 |
Genre | Mathematics |
ISBN | 1470428563 |
This volume contains the proceedings of the AMS Special Session on Higher Genus Curves and Fibrations in Mathematical Physics and Arithmetic Geometry, held on January 8, 2016, in Seattle, Washington. Algebraic curves and their fibrations have played a major role in both mathematical physics and arithmetic geometry. This volume focuses on the role of higher genus curves; in particular, hyperelliptic and superelliptic curves in algebraic geometry and mathematical physics. The articles in this volume investigate the automorphism groups of curves and superelliptic curves and results regarding integral points on curves and their applications in mirror symmetry. Moreover, geometric subjects are addressed, such as elliptic 3 surfaces over the rationals, the birational type of Hurwitz spaces, and links between projective geometry and abelian functions.
Euler's Gem
Title | Euler's Gem PDF eBook |
Author | David S. Richeson |
Publisher | Princeton University Press |
Pages | 336 |
Release | 2019-07-23 |
Genre | Mathematics |
ISBN | 0691191999 |
How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.
Floer Homology, Gauge Theory, and Low-Dimensional Topology
Title | Floer Homology, Gauge Theory, and Low-Dimensional Topology PDF eBook |
Author | Clay Mathematics Institute. Summer School |
Publisher | American Mathematical Soc. |
Pages | 318 |
Release | 2006 |
Genre | Mathematics |
ISBN | 9780821838457 |
Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in theearly 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology. The analogy between these two fields of study was further underscored by Andreas Floer's constructionof an infinite-dimensional variant of Morse theory that applies in two a priori different contexts: either to define symplectic invariants for pairs of Lagrangian submanifolds of a symplectic manifold, or to define topological This volume is based on lecture courses and advanced seminars given at the 2004 Clay Mathematics Institute Summer School at the Alfred Renyi Institute of Mathematics in Budapest, Hungary. Several of the authors have added a considerable amount of additional material tothat presented at the school, and the resulting volume provides a state-of-the-art introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds. Information for our distributors: Titles in this seriesare copublished with the Clay Mathematics Institute (Cambridge, MA).
Higher Structures in Topology, Geometry, and Physics
Title | Higher Structures in Topology, Geometry, and Physics PDF eBook |
Author | Ralph M. Kaufmann |
Publisher | American Mathematical Society |
Pages | 332 |
Release | 2024-07-03 |
Genre | Mathematics |
ISBN | 1470471426 |
This volume contains the proceedings of the AMS Special Session on Higher Structures in Topology, Geometry, and Physics, held virtually on March 26–27, 2022. The articles give a snapshot survey of the current topics surrounding the mathematical formulation of field theories. There is an intricate interplay between geometry, topology, and algebra which captures these theories. The hallmark are higher structures, which one can consider as the secondary algebraic or geometric background on which the theories are formulated. The higher structures considered in the volume are generalizations of operads, models for conformal field theories, string topology, open/closed field theories, BF/BV formalism, actions on Hochschild complexes and related complexes, and their geometric and topological aspects.