Cases on Health Outcomes and Clinical Data Mining

Cases on Health Outcomes and Clinical Data Mining
Title Cases on Health Outcomes and Clinical Data Mining PDF eBook
Author Patricia B. Cerrito
Publisher IGI Global
Pages 0
Release 2010
Genre Computers
ISBN 9781615207237

Download Cases on Health Outcomes and Clinical Data Mining Book in PDF, Epub and Kindle

"Because so much data is now becoming readily available to investigate health outcomes, it is important to examine just how statistical models are used to do this. This book studies health outcomes research using data mining techniques"--Provided by publisher.

Cases on Health Outcomes and Clinical Data Mining: Studies and Frameworks

Cases on Health Outcomes and Clinical Data Mining: Studies and Frameworks
Title Cases on Health Outcomes and Clinical Data Mining: Studies and Frameworks PDF eBook
Author Cerrito, Patricia
Publisher IGI Global
Pages 463
Release 2010-02-28
Genre Computers
ISBN 1615207244

Download Cases on Health Outcomes and Clinical Data Mining: Studies and Frameworks Book in PDF, Epub and Kindle

"Because so much data is now becoming readily available to investigate health outcomes, it is important to examine just how statistical models are used to do this. This book studies health outcomes research using data mining techniques"--Provided by publisher.

Clinical Data-Mining in Practice-Based Research

Clinical Data-Mining in Practice-Based Research
Title Clinical Data-Mining in Practice-Based Research PDF eBook
Author Irwin Epstein
Publisher Routledge
Pages 209
Release 2001
Genre Business & Economics
ISBN 0789017083

Download Clinical Data-Mining in Practice-Based Research Book in PDF, Epub and Kindle

This groundbreaking book will show you how to use existing patient records to do original research so you can custom-tailor programs to fit the specific needs of your department. Clinical Data-Mining in Practice-Based Research draws from the experiences of members of the Mount Sinai Department of Social Work staff. By analyzing case data, these professionals were able to identify biopsychosocial factors that affected social-health outcomes, and therefore to assess, maintain, and improve the quality of social work services. The detailed discussions in this book will help you apply these techniques toward improving your own service.

Registries for Evaluating Patient Outcomes

Registries for Evaluating Patient Outcomes
Title Registries for Evaluating Patient Outcomes PDF eBook
Author Agency for Healthcare Research and Quality/AHRQ
Publisher Government Printing Office
Pages 385
Release 2014-04-01
Genre Medical
ISBN 1587634333

Download Registries for Evaluating Patient Outcomes Book in PDF, Epub and Kindle

This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.

Process Mining in Healthcare

Process Mining in Healthcare
Title Process Mining in Healthcare PDF eBook
Author Ronny S. Mans
Publisher Springer
Pages 99
Release 2015-03-12
Genre Computers
ISBN 3319160710

Download Process Mining in Healthcare Book in PDF, Epub and Kindle

What are the possibilities for process mining in hospitals? In this book the authors provide an answer to this question by presenting a healthcare reference model that outlines all the different classes of data that are potentially available for process mining in healthcare and the relationships between them. Subsequently, based on this reference model, they explain the application opportunities for process mining in this domain and discuss the various kinds of analyses that can be performed. They focus on organizational healthcare processes rather than medical treatment processes. The combination of event data and process mining techniques allows them to analyze the operational processes within a hospital based on facts, thus providing a solid basis for managing and improving processes within hospitals. To this end, they also explicitly elaborate on data quality issues that are relevant for the data aspects of the healthcare reference model. This book mainly targets advanced professionals involved in areas related to business process management, business intelligence, data mining, and business process redesign for healthcare systems as well as graduate students specializing in healthcare information systems and process analysis.

Machine Learning and AI for Healthcare

Machine Learning and AI for Healthcare
Title Machine Learning and AI for Healthcare PDF eBook
Author Arjun Panesar
Publisher Apress
Pages 390
Release 2019-02-04
Genre Computers
ISBN 1484237994

Download Machine Learning and AI for Healthcare Book in PDF, Epub and Kindle

Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

Redesigning the Clinical Effectiveness Research Paradigm

Redesigning the Clinical Effectiveness Research Paradigm
Title Redesigning the Clinical Effectiveness Research Paradigm PDF eBook
Author Institute of Medicine
Publisher National Academies Press
Pages 442
Release 2010-10-20
Genre Medical
ISBN 030911988X

Download Redesigning the Clinical Effectiveness Research Paradigm Book in PDF, Epub and Kindle

Recent scientific and technological advances have accelerated our understanding of the causes of disease development and progression, and resulted in innovative treatments and therapies. Ongoing work to elucidate the effects of individual genetic variation on patient outcomes suggests the rapid pace of discovery in the biomedical sciences will only accelerate. However, these advances belie an important and increasing shortfall between the expansion in therapy and treatment options and knowledge about how these interventions might be applied appropriately to individual patients. The impressive gains made in Americans' health over the past decades provide only a preview of what might be possible when data on treatment effects and patient outcomes are systematically captured and used to evaluate their effectiveness. Needed for progress are advances as dramatic as those experienced in biomedicine in our approach to assessing clinical effectiveness. In the emerging era of tailored treatments and rapidly evolving practice, ensuring the translation of scientific discovery into improved health outcomes requires a new approach to clinical evaluation. A paradigm that supports a continual learning process about what works best for individual patients will not only take advantage of the rigor of trials, but also incorporate other methods that might bring insights relevant to clinical care and endeavor to match the right method to the question at hand. The Institute of Medicine Roundtable on Value & Science-Driven Health Care's vision for a learning healthcare system, in which evidence is applied and generated as a natural course of care, is premised on the development of a research capacity that is structured to provide timely and accurate evidence relevant to the clinical decisions faced by patients and providers. As part of the Roundtable's Learning Healthcare System series of workshops, clinical researchers, academics, and policy makers gathered for the workshop Redesigning the Clinical Effectiveness Research Paradigm: Innovation and Practice-Based Approaches. Participants explored cutting-edge research designs and methods and discussed strategies for development of a research paradigm to better accommodate the diverse array of emerging data resources, study designs, tools, and techniques. Presentations and discussions are summarized in this volume.