Carbon Nanotubes for Biomedical Applications
Title | Carbon Nanotubes for Biomedical Applications PDF eBook |
Author | Rüdiger Klingeler |
Publisher | Springer Science & Business Media |
Pages | 286 |
Release | 2011-02-09 |
Genre | Technology & Engineering |
ISBN | 3642148026 |
This book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.
Nanomaterials for Medical Applications
Title | Nanomaterials for Medical Applications PDF eBook |
Author | Zoraida Aguilar |
Publisher | Newnes |
Pages | 481 |
Release | 2012-10-10 |
Genre | Medical |
ISBN | 0123850894 |
Structurally the work is demarcated into the six most popular areas of research: (1) biocompatibility of nanomaterials with living organisms in their various manifestations (2) nanobiosensors for clinical diagnostics, detecting biomolecules which are useful in the clinical diagnosis of genetic, metabolically acquired, induced or infectious disease (3) targeted drug delivery for nanomaterials in their various modifications (4) nanomedical devices and structures which are used in the development of implantable medical devices and structures such as nanorobots (5) nanopharmacology, as novel nanoparticles are increasingly engineered to diagnose conditions and recognize pathogens, identify ideal pharmaceutical agents to treat the condition or pathogens, fuel high-yield production of matched pharmaceuticals (potentially in vivo), locate, attach or enter target tissue,
Carbon Nanomaterials for Biological and Medical Applications
Title | Carbon Nanomaterials for Biological and Medical Applications PDF eBook |
Author | Sekhar Chandra Ray |
Publisher | Elsevier |
Pages | 252 |
Release | 2017-03-07 |
Genre | Technology & Engineering |
ISBN | 0323479073 |
Nanomaterials for Biological and Medical Applications explores the different applications of carbon nanomaterials in drug and gene therapies and their use in tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants, and as antitoxents. The book describes the synthesis processing of carbon nanomaterials, carbon composite nanomaterials, and their different biological and biomedical applications, including the removal of biologically toxic materials, optical biosensor applications, bio-imaging probe, drug delivery, cancer treatments, and other biomedical applications. - Explains the major synthesis chemical process of carbon nanomaterials for biological applications - Discusses how carbon nanomaterials can be practically used to create more efficient nanodevices in biosensing, medical imaging, and drug delivery - Explores how the unique physical properties of carbon nanomaterials allows them to remove biologically toxic materials
Biomedical Applications of Nanoparticles
Title | Biomedical Applications of Nanoparticles PDF eBook |
Author | Alexandru Mihai Grumezescu |
Publisher | William Andrew |
Pages | 532 |
Release | 2019-02-28 |
Genre | Science |
ISBN | 0128166304 |
Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles
Carbon Nanostructures for Biomedical Applications
Title | Carbon Nanostructures for Biomedical Applications PDF eBook |
Author | Tatiana Da Ros |
Publisher | Royal Society of Chemistry |
Pages | 375 |
Release | 2021-02-15 |
Genre | Science |
ISBN | 1788015673 |
Carbon nanostructures, namely fullerenes, single and multiwall carbon nanotubes, graphene as well as the most recent graphene quantum dots and carbon nanodots, have experienced a tremendous progress along the last two decades in terms of the knowledge acquired on their chemical and physical properties. These insights have enabled their increasing use in biomedical applications, from scaffolds to devices. Edited by renowned experts in the subject, this book collects and delineates the most notable advances within the growing field surrounding carbon nanostructures for biomedical purposes. Exploration ranges from fundamentals around classifications to toxicity, biocompatibility and the immune response. Modified nanocarbon-based materials and emergent classes, such as carbon dots and nanohorns are discussed, with chapters devoted from carriers for drug delivery and inhibitors of emergent viruses infection, to applications across imaging, biosensors, tissue scaffolding and biotechnology. The book will provide a valuable reference resource and will extensively benefit researchers and professionals working across the fields of chemistry, materials science, and biomedical and chemical engineering.
Nanoparticles for Biomedical Applications
Title | Nanoparticles for Biomedical Applications PDF eBook |
Author | Eun Ji Chung |
Publisher | Elsevier |
Pages | 442 |
Release | 2019-11-19 |
Genre | Technology & Engineering |
ISBN | 0128166630 |
Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications brings into one place information on the design and biomedical applications of different classes of nanoparticles. While aspects are dealt with in individual journal articles, there is not one source that covers this area comprehensively. This book fills this gap in the literature. - Outlines an in-depth review of biomedical applications of a variety of nanoparticle classes - Discusses the major techniques for designing nanoparticles for use in biomedicine - Explores safety and regulatory aspects for the use of nanoparticles in biomedicine
Protein-Nanoparticle Interactions
Title | Protein-Nanoparticle Interactions PDF eBook |
Author | Masoud Rahman |
Publisher | Springer Science & Business Media |
Pages | 95 |
Release | 2013-06-24 |
Genre | Science |
ISBN | 3642375553 |
In recent years, the fabrication of nanomaterials and exploration of their properties have attracted the attention of various scientific disciplines such as biology, physics, chemistry, and engineering. Although nanoparticulate systems are of significant interest in various scientific and technological areas, there is little known about the safety of these nanoscale objects. It has now been established that the surfaces of nanoparticles are immediately covered by biomolecules (e.g. proteins, ions, and enzymes) upon their entrance into a biological medium. This interaction with the biological medium modulates the surface of the nanoparticles, conferring a “biological identity” to their surfaces (referred to as a “corona”), which determines the subsequent cellular/tissue responses. The new interface between the nanoparticles and the biological medium/proteins, called “bio-nano interface,” has been very rarely studied in detail to date, though the interest in this topic is rapidly growing. In this book, the importance of the physiochemical characteristics of nanoparticles for the properties of the protein corona is discussed in detail, followed by comprehensive descriptions of the methods for assessing the protein-nanoparticle interactions. The advantages and limitations of available corona evaluation methods (e.g. spectroscopy methods, mass spectrometry, nuclear magnetic resonance, electron microscopy, X-ray crystallography, and differential centrifugal sedimentation) are examined in detail, followed by a discussion of the possibilities for enhancing the current methods and a call for new techniques. Moreover, the advantages and disadvantages of protein-nanoparticle interaction phenomena are explored and discussed, with a focus on the biological impacts.