Cancer Modelling and Simulation
Title | Cancer Modelling and Simulation PDF eBook |
Author | Luigi Preziosi |
Publisher | CRC Press |
Pages | 456 |
Release | 2003-06-18 |
Genre | Mathematics |
ISBN | 9780203494899 |
Understanding how cancer tumours develop and spread is vital for finding treatments and cures. Cancer Modelling and Simulation demonstrates how mathematical modelling and computer simulation techniques are used to discover and gain insight into the dynamics of tumour development and growth. It highlights the benefits of tumour modelling, such as discovering optimal tumour therapy schedules, identifying the most promising candidates for further clinical investigation, and reducing the number of animal experiments. By examining the analytical, mathematical, and biological aspects of tumour growth and modelling, the book provides a common language and knowledge for professionals in several disciplines.
Multiscale Cancer Modeling
Title | Multiscale Cancer Modeling PDF eBook |
Author | Thomas S. Deisboeck |
Publisher | CRC Press |
Pages | 492 |
Release | 2010-12-08 |
Genre | Mathematics |
ISBN | 1439814422 |
Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat
Multiscale Modeling of Cancer
Title | Multiscale Modeling of Cancer PDF eBook |
Author | Vittorio Cristini |
Publisher | Cambridge University Press |
Pages | 299 |
Release | 2010-09-09 |
Genre | Technology & Engineering |
ISBN | 1139491504 |
Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.
Selected Topics in Cancer Modeling
Title | Selected Topics in Cancer Modeling PDF eBook |
Author | Nicola Bellomo |
Publisher | Springer Science & Business Media |
Pages | 481 |
Release | 2008-12-10 |
Genre | Mathematics |
ISBN | 0817647139 |
This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.
Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling
Title | Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling PDF eBook |
Author | Dominik Wodarz |
Publisher | World Scientific |
Pages | 266 |
Release | 2005-01-24 |
Genre | Science |
ISBN | 9814481874 |
The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.
Biomaterials for 3D Tumor Modeling
Title | Biomaterials for 3D Tumor Modeling PDF eBook |
Author | Subhas C. Kundu |
Publisher | Elsevier |
Pages | 773 |
Release | 2020-08-22 |
Genre | Technology & Engineering |
ISBN | 012818129X |
Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. - Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles - Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types - Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery
A Survey of Models for Tumor-Immune System Dynamics
Title | A Survey of Models for Tumor-Immune System Dynamics PDF eBook |
Author | John A. Adam |
Publisher | Springer Science & Business Media |
Pages | 357 |
Release | 2012-10-06 |
Genre | Mathematics |
ISBN | 0817681191 |
Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field.