Calculus on Normed Vector Spaces

Calculus on Normed Vector Spaces
Title Calculus on Normed Vector Spaces PDF eBook
Author Rodney Coleman
Publisher Springer Science & Business Media
Pages 255
Release 2012-07-25
Genre Mathematics
ISBN 1461438942

Download Calculus on Normed Vector Spaces Book in PDF, Epub and Kindle

This book serves as an introduction to calculus on normed vector spaces at a higher undergraduate or beginning graduate level. The prerequisites include basic calculus and linear algebra, as well as a certain mathematical maturity. All the important topology and functional analysis topics are introduced where necessary. In its attempt to show how calculus on normed vector spaces extends the basic calculus of functions of several variables, this book is one of the few textbooks to bridge the gap between the available elementary texts and high level texts. The inclusion of many non-trivial applications of the theory and interesting exercises provides motivation for the reader.

Calculus in Vector Spaces, Second Edition, Revised Expanded

Calculus in Vector Spaces, Second Edition, Revised Expanded
Title Calculus in Vector Spaces, Second Edition, Revised Expanded PDF eBook
Author Lawrence Corwin
Publisher CRC Press
Pages 616
Release 1994-12-08
Genre Mathematics
ISBN 9780824792794

Download Calculus in Vector Spaces, Second Edition, Revised Expanded Book in PDF, Epub and Kindle

Calculus in Vector Spaces addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This second edition introduces, among other topics, the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space, allowing for Green's theorem, Gauss's theorem, and Stokes's theorem to be understood in a natural setting. Mathematical analysts, algebraists, engineers, physicists, and students taking advanced calculus and linear algebra courses should find this book useful.

Calculus in Vector Spaces, Revised Expanded

Calculus in Vector Spaces, Revised Expanded
Title Calculus in Vector Spaces, Revised Expanded PDF eBook
Author Lawrence Corwin
Publisher Routledge
Pages 600
Release 2017-11-22
Genre Mathematics
ISBN 1351462830

Download Calculus in Vector Spaces, Revised Expanded Book in PDF, Epub and Kindle

Calculus in Vector Spaces addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This second edition introduces, among other topics, the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space, allowing for Green's theorem, Gauss's theorem, and Stokes's theorem to be understood in a natural setting. Mathematical analysts, algebraists, engineers, physicists, and students taking advanced calculus and linear algebra courses should find this book useful.

Analysis in Vector Spaces

Analysis in Vector Spaces
Title Analysis in Vector Spaces PDF eBook
Author Mustafa A. Akcoglu
Publisher John Wiley & Sons
Pages 480
Release 2011-09-09
Genre Mathematics
ISBN 1118164598

Download Analysis in Vector Spaces Book in PDF, Epub and Kindle

A rigorous introduction to calculus in vector spaces The concepts and theorems of advanced calculus combined withrelated computational methods are essential to understanding nearlyall areas of quantitative science. Analysis in Vector Spacespresents the central results of this classic subject throughrigorous arguments, discussions, and examples. The book aims tocultivate not only knowledge of the major theoretical results, butalso the geometric intuition needed for both mathematicalproblem-solving and modeling in the formal sciences. The authors begin with an outline of key concepts, terminology,and notation and also provide a basic introduction to set theory,the properties of real numbers, and a review of linear algebra. Anelegant approach to eigenvector problems and the spectral theoremsets the stage for later results on volume and integration.Subsequent chapters present the major results of differential andintegral calculus of several variables as well as the theory ofmanifolds. Additional topical coverage includes: Sets and functions Real numbers Vector functions Normed vector spaces First- and higher-order derivatives Diffeomorphisms and manifolds Multiple integrals Integration on manifolds Stokes' theorem Basic point set topology Numerous examples and exercises are provided in each chapter toreinforce new concepts and to illustrate how results can be appliedto additional problems. Furthermore, proofs and examples arepresented in a clear style that emphasizes the underlying intuitiveideas. Counterexamples are provided throughout the book to warnagainst possible mistakes, and extensive appendices outline theconstruction of real numbers, include a fundamental result aboutdimension, and present general results about determinants. Assuming only a fundamental understanding of linear algebra andsingle variable calculus, Analysis in Vector Spaces is anexcellent book for a second course in analysis for mathematics,physics, computer science, and engineering majors at theundergraduate and graduate levels. It also serves as a valuablereference for further study in any discipline that requires a firmunderstanding of mathematical techniques and concepts.

A Vector Space Approach to Geometry

A Vector Space Approach to Geometry
Title A Vector Space Approach to Geometry PDF eBook
Author Melvin Hausner
Publisher Courier Dover Publications
Pages 417
Release 2018-10-17
Genre Mathematics
ISBN 0486835391

Download A Vector Space Approach to Geometry Book in PDF, Epub and Kindle

A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.

Topological Vector Spaces and Distributions

Topological Vector Spaces and Distributions
Title Topological Vector Spaces and Distributions PDF eBook
Author John Horvath
Publisher Courier Corporation
Pages 466
Release 2013-10-03
Genre Mathematics
ISBN 0486311031

Download Topological Vector Spaces and Distributions Book in PDF, Epub and Kindle

Precise exposition provides an excellent summary of the modern theory of locally convex spaces and develops the theory of distributions in terms of convolutions, tensor products, and Fourier transforms. 1966 edition.

Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)
Title Advanced Calculus (Revised Edition) PDF eBook
Author Lynn Harold Loomis
Publisher World Scientific Publishing Company
Pages 595
Release 2014-02-26
Genre Mathematics
ISBN 9814583952

Download Advanced Calculus (Revised Edition) Book in PDF, Epub and Kindle

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.