Physics Of Semiconductors, The - Proceedings Of The Xxi International Conference (In 2 Volumes)

Physics Of Semiconductors, The - Proceedings Of The Xxi International Conference (In 2 Volumes)
Title Physics Of Semiconductors, The - Proceedings Of The Xxi International Conference (In 2 Volumes) PDF eBook
Author Ping Jiang
Publisher World Scientific
Pages 2151
Release 1993-03-31
Genre
ISBN 9814554065

Download Physics Of Semiconductors, The - Proceedings Of The Xxi International Conference (In 2 Volumes) Book in PDF, Epub and Kindle

The 21st conference proceedings continue the tradition of the ICPS series. The proceedings cover all aspects of semiconductor physics, including those related to materials, processing and devices. Plenary and invited speakers address areas of major interest.

The Physics of Diamond

The Physics of Diamond
Title The Physics of Diamond PDF eBook
Author Società italiana di fisica
Publisher IOS Press
Pages 635
Release 1997
Genre Science
ISBN 1614992207

Download The Physics of Diamond Book in PDF, Epub and Kindle

Diamond is an extreme material among possible atomic aggregations in nature, and as such has many extreme properties. This unique position makes it a fascinating subject both for science and for applications. This has been particularly true in recent years, since the surprising discovery at Union Carbide (1953) of the possibility of chemical vapour deposition of diamond films at low pressures, where diamond is metastable with respect to graphite. This discovery cleared the way to the development of economical deposition techniques that have been obtaining progressively better-quality diamond, both pure and doped, in a controlled way and for a variety of applications. The remarkable properties and applications range from mechanical (the extreme hardness, tensile and compressive strength, wear performance) to thermal (the highest conductivity), optical (wide range of transparency), chemical (inertness to most chemicals), biological (biocompatibility) and electronic (high electronic carrier mobility, large band gap and dielectric breakdown strength, negative electron affinity), with the simultaneous presence of so many extraordinary qualities often resulting in added value for a given application.We are presently at a turning point in the development of diamond physics and applications. While some achievements can be considered well established, on the other hand, new opportunities and challenges are facing the scientific community, particularly with regard to novel exciting deposition processes and techniques or new properties and applications in electronics. This Enrico Fermi Course on "The Physics of Diamond" is particularly focused on the new developments and prospects, which may well constitute a reference point for a new generation of scientists at what may possibly be the beginning of a new age in diamond. The course attracted several of the most distinguished experts in the field as lecturers and an audience of almost as distinguished students and observers from 19 countries. Participation and discussions were lively to the very last day, ranging from traditional diamond physics to new diamond physics, and from well-known applications to the new exciting opportunities.The material in this volume is organized in the following way: the first part (13 lectures) is essentially devoted to growth and structure, the second part to properties and applications, with a closing lecture exploring new exotic diamonds in the distant future. The earlier lectures extensively cover the many processes of plasma chemical vapour deposition, including advanced contributions in theoretical modelling of these processes. Novel deposition mechanisms are considered: low-temperature CVD and laser-activated processes, including the so-called QQC experiments. This first part closes with a discussion of amorphous phases. In the second part, particular emphasis is placed on electronic properties and applications. This includes an extensive discussion of doping and, in addition, the promising perspectives of diamond as an electron emitter. Its newly discovered remarkable electron affinity properties lead to a new dimension in research and development, of great strategical importance for an increasing role of diamond in electronics.

Materials Modelling using Density Functional Theory

Materials Modelling using Density Functional Theory
Title Materials Modelling using Density Functional Theory PDF eBook
Author Feliciano Giustino
Publisher OUP Oxford
Pages 299
Release 2014-05-15
Genre Science
ISBN 0191639435

Download Materials Modelling using Density Functional Theory Book in PDF, Epub and Kindle

This book is an introduction to the quantum theory of materials and first-principles computational materials modelling. It explains how to use density functional theory as a practical tool for calculating the properties of materials without using any empirical parameters. The structural, mechanical, optical, electrical, and magnetic properties of materials are described within a single unified conceptual framework, rooted in the Schrödinger equation of quantum mechanics, and powered by density functional theory. This book is intended for senior undergraduate and first-year graduate students in materials science, physics, chemistry, and engineering who are approaching for the first time the study of materials at the atomic scale. The inspiring principle of the book is borrowed from one of the slogans of the Perl programming language, 'Easy things should be easy and hard things should be possible'. Following this philosophy, emphasis is placed on the unifying concepts, and on the frequent use of simple heuristic arguments to build on one's own intuition. The presentation style is somewhat cross disciplinary; an attempt is made to seamlessly combine materials science, quantum mechanics, electrodynamics, and numerical analysis, without using a compartmentalized approach. Each chapter is accompanied by an extensive set of references to the original scientific literature and by exercises where all key steps and final results are indicated in order to facilitate learning. This book can be used either as a complement to the quantum theory of materials, or as a primer in modern techniques of computational materials modelling using density functional theory.

Solid State Physics

Solid State Physics
Title Solid State Physics PDF eBook
Author
Publisher Academic Press
Pages 541
Release 1958-01-01
Genre Technology & Engineering
ISBN 0080864716

Download Solid State Physics Book in PDF, Epub and Kindle

Solid State Physics

Atomistic Simulation of Materials

Atomistic Simulation of Materials
Title Atomistic Simulation of Materials PDF eBook
Author David J. Srolovitz
Publisher Springer Science & Business Media
Pages 454
Release 2012-12-06
Genre Technology & Engineering
ISBN 1468457039

Download Atomistic Simulation of Materials Book in PDF, Epub and Kindle

This book contains proceedings of an international symposium on Atomistic th Simulation of Materials: Beyond Pair Potentials which was held in Chicago from the 25 th to 30 of September 1988, in conjunction with the ASM World Materials Congress. This symposium was financially supported by the Energy Conversion and Utilization Technology Program of the U. S Department of Energy and by the Air Force Office of Scientific Research. A total of fifty four talks were presented of which twenty one were invited. Atomistic simulations are now common in materials research. Such simulations are currently used to determine the structural and thermodynamic properties of crystalline solids, glasses and liquids. They are of particular importance in studies of crystal defects, interfaces and surfaces since their structures and behavior playa dominant role in most materials properties. The utility of atomistic simulations lies in their ability to provide information on those length scales where continuum theory breaks down and instead complex many body problems have to be solved to understand atomic level structures and processes.

Quantum Monte Carlo Methods in Physics and Chemistry

Quantum Monte Carlo Methods in Physics and Chemistry
Title Quantum Monte Carlo Methods in Physics and Chemistry PDF eBook
Author M.P. Nightingale
Publisher Springer Science & Business Media
Pages 486
Release 1998-12-31
Genre Mathematics
ISBN 9780792355526

Download Quantum Monte Carlo Methods in Physics and Chemistry Book in PDF, Epub and Kindle

This book contains lectures on the basic theory and applications of quantum Monte Carlo methods, with contributions written by authorities in the field. Although tutorial in nature, it includes current developments. Both continuum systems and lattice models are covered. The applications include atomic, molecular, and solid state physics, statistical and low-temperature physics, and nuclear structure. Suitable for Ph.D. students and beyond.

Quantum Theory of Real Materials

Quantum Theory of Real Materials
Title Quantum Theory of Real Materials PDF eBook
Author James R. Chelikowsky
Publisher Springer Science & Business Media
Pages 580
Release 1996-02-29
Genre Science
ISBN 9780792396666

Download Quantum Theory of Real Materials Book in PDF, Epub and Kindle

A Festschrift in honor of Professor Marvin L. Cohen This volume is a Festschrift in honor of Professor Marvin L. Cohen. The articles, contributed by leading researchers in condensed matter physics, high-light recent advances in the use of quantum theory to explain and predict properties of real materials. The invention of quantum mechanics in the 1920's provided detailed descriptions of the electronic structure of atoms. However, a similar understanding of solids has been achieved only in the past 30 years, owing to the complex electron-ion and electron electron interactions in these systems. Professor Cohen is a central figure in this achievement. His development of the pseudopotential and total energy methods provided an alternate route using computers for the exploration of solids and new materials even when they have not yet been synthesized. Professor Cohen's contributions to materials theory have been both fundamental and encompassing. The corpus of his work consists of over 500 papers and a textbook. His band structures for semiconductors are used worldwide by researchers in solid state physics and chemistry and by device engineers. Professor Cohen's own use of his theories has resulted in the determination of the electronic structure, optical properties, structural and vibrational properties, and superconducting properties of numerous condensed matter systems including semiconductors, metals, surfaces, interfaces, defects in solids, clusters, and novel materials such as the fullerides and nanotubes.