Building AI Intensive Python Applications
Title | Building AI Intensive Python Applications PDF eBook |
Author | Rachelle Palmer |
Publisher | Packt Publishing Ltd |
Pages | 299 |
Release | 2024-09-06 |
Genre | Computers |
ISBN | 1836207247 |
Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps Key Features Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks Implement effective retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance and accuracy with model compression and deployment optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications. The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You’ll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn Understand the architecture and components of the generative AI stack Explore the role of vector databases in enhancing AI applications Master Python frameworks for AI development Implement Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common failures and challenges in AI development Who this book is for This book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.
Artificial Intelligence with Python
Title | Artificial Intelligence with Python PDF eBook |
Author | Prateek Joshi |
Publisher | Packt Publishing Ltd |
Pages | 437 |
Release | 2017-01-27 |
Genre | Computers |
ISBN | 1786469677 |
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Deep Learning for Coders with fastai and PyTorch
Title | Deep Learning for Coders with fastai and PyTorch PDF eBook |
Author | Jeremy Howard |
Publisher | O'Reilly Media |
Pages | 624 |
Release | 2020-06-29 |
Genre | Computers |
ISBN | 1492045497 |
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Designing Data-Intensive Applications
Title | Designing Data-Intensive Applications PDF eBook |
Author | Martin Kleppmann |
Publisher | "O'Reilly Media, Inc." |
Pages | 658 |
Release | 2017-03-16 |
Genre | Computers |
ISBN | 1491903104 |
Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures
Artificial Intelligence with Python
Title | Artificial Intelligence with Python PDF eBook |
Author | Alberto Artasanchez |
Publisher | Packt Publishing Ltd |
Pages | 619 |
Release | 2020-01-31 |
Genre | Computers |
ISBN | 1839216077 |
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Building AI Applications with Microsoft Semantic Kernel
Title | Building AI Applications with Microsoft Semantic Kernel PDF eBook |
Author | Lucas A. Meyer |
Publisher | Packt Publishing Ltd |
Pages | 252 |
Release | 2024-06-21 |
Genre | Computers |
ISBN | 1835469590 |
Unlock the power of GenAI by effortlessly linking your C# and Python apps with cutting-edge models, orchestrating diverse AI services with finesse, and crafting bespoke applications through immersive, real-world examples Key Features Link your C# and Python applications with the latest AI models from OpenAI Combine and orchestrate different AI services such as text and image generators Create your own AI apps with real-world use case examples that show you how to use basic generative AI, create images, process documents, use a vector database Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the fast-paced world of AI, developers are constantly seeking efficient ways to integrate AI capabilities into their apps. Microsoft Semantic Kernel simplifies this process by using the GenAI features from Microsoft and OpenAI. Written by Lucas A. Meyer, a Principal Research Scientist in Microsoft’s AI for Good Lab, this book helps you get hands on with Semantic Kernel. It begins by introducing you to different generative AI services such as GPT-3.5 and GPT-4, demonstrating their integration with Semantic Kernel. You’ll then learn to craft prompt templates for reuse across various AI services and variables. Next, you’ll learn how to add functionality to Semantic Kernel by creating your own plugins. The second part of the book shows you how to combine multiple plugins to execute complex actions, and how to let Semantic Kernel use its own AI to solve complex problems by calling plugins, including the ones made by you. The book concludes by teaching you how to use vector databases to expand the memory of your AI services and how to help AI remember the context of earlier requests. You’ll also be guided through several real-world examples of applications, such as RAG and custom GPT agents. By the end of this book, you'll have gained the knowledge you need to start using Semantic Kernel to add AI capabilities to your applications.What you will learn Write reusable AI prompts and connect to different AI providers Create new plugins that extend the capabilities of AI services Understand how to combine multiple plugins to execute complex actions Orchestrate multiple AI services to accomplish a task Leverage the powerful planner to automatically create appropriate AI calls Use vector databases as additional memory for your AI tasks Deploy your application to ChatGPT, making it available to hundreds of millions of users Who this book is for This book is for beginner-level to experienced .NET or Python software developers who want to quickly incorporate the latest AI technologies into their applications, without having to learn the details of every new AI service. Product managers with some development experience will find this book helpful while creating proof-of-concept applications. This book requires working knowledge of programming basics.
Building AI Applications with ChatGPT APIs
Title | Building AI Applications with ChatGPT APIs PDF eBook |
Author | Martin Yanev |
Publisher | Packt Publishing Ltd |
Pages | 258 |
Release | 2023-09-21 |
Genre | Computers |
ISBN | 1805128604 |
Enhance your application development skills by building a ChatGPT clone, code bug fixer, quiz generator, translation app, email auto-reply, PowerPoint generator, and more in just one read! Key Features Become proficient in building AI applications with ChatGPT, DALL-E, and Whisper Understand how to select the optimal ChatGPT model and fine-tune it for your specific use case Monetize your applications by integrating the ChatGPT API with Stripe Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionCombining ChatGPT APIs with Python opens doors to building extraordinary AI applications. By leveraging these APIs, you can focus on the application logic and user experience, while ChatGPT’s robust NLP capabilities handle the intricacies of human-like text understanding and generation. This book is a guide for beginners to master the ChatGPT, Whisper, and DALL-E APIs by building ten innovative AI projects. These projects offer practical experience in integrating ChatGPT with frameworks and tools such as Flask, Django, Microsoft Office APIs, and PyQt. Throughout this book, you’ll get to grips with performing NLP tasks, building a ChatGPT clone, and creating an AI-driven code bug fixing SaaS application. You’ll also cover speech recognition, text-to-speech functionalities, language translation, and generation of email replies and PowerPoint presentations. This book teaches you how to fine-tune ChatGPT and generate AI art using DALL-E APIs, and then offers insights into selling your apps by integrating ChatGPT API with Stripe. With practical examples available on GitHub, the book gradually progresses from easy to advanced topics, cultivating the expertise required to develop, deploy, and monetize your own groundbreaking applications by harnessing the full potential of ChatGPT APIs.What you will learn Develop a solid foundation in using the ChatGPT API for natural language processing tasks Build, deploy, and capitalize on a variety of desktop and SaaS AI applications Seamlessly integrate ChatGPT with established frameworks such as Flask, Django, and Microsoft Office APIs Channel your creativity by integrating DALL-E APIs to produce stunning AI-generated art within your desktop applications Experience the power of Whisper API's speech recognition and text-to-speech features Discover techniques to optimize ChatGPT models through the process of fine-tuning Who this book is for With best practices, tips, and tricks for building applications using the ChatGPT API, this book is for programmers, entrepreneurs, and software enthusiasts. Python developers interested in AI applications involving ChatGPT, software developers who want to integrate AI technology, and web developers looking to create AI-powered web applications with ChatGPT will also find this book useful. A fundamental understanding of Python programming and experience of working with APIs will help you make the most of this book.