An Introduction to Branching Measure-Valued Processes
Title | An Introduction to Branching Measure-Valued Processes PDF eBook |
Author | Evgeniĭ Borisovich Dynkin |
Publisher | American Mathematical Soc. |
Pages | 146 |
Release | 1994 |
Genre | Mathematics |
ISBN | 0821802690 |
For about half a century, two classes of stochastic processes---Gaussian processes and processes with independent increments---have played an important role in the development of stochastic analysis and its applications. During the last decade, a third class---branching measure-valued (BMV) processes---has also been the subject of much research. A common feature of all three classes is that their finite-dimensional distributions are infinitely divisible, allowing the use of the powerful analytic tool of Laplace (or Fourier) transforms. All three classes, in an infinite-dimensional setting, provide means for study of physical systems with infinitely many degrees of freedom. This is the first monograph devoted to the theory of BMV processes. Dynkin first constructs a large class of BMV processes, called superprocesses, by passing to the limit from branching particle systems. Then he proves that, under certain restrictions, a general BMV process is a superprocess. A special chapter is devoted to the connections between superprocesses and a class of nonlinear partial differential equations recently discovered by Dynkin.
Measure-Valued Branching Markov Processes
Title | Measure-Valued Branching Markov Processes PDF eBook |
Author | Zenghu Li |
Publisher | Springer Science & Business Media |
Pages | 356 |
Release | 2010-11-10 |
Genre | Mathematics |
ISBN | 3642150047 |
Measure-valued branching processes arise as high density limits of branching particle systems. The Dawson-Watanabe superprocess is a special class of those. The author constructs superprocesses with Borel right underlying motions and general branching mechanisms and shows the existence of their Borel right realizations. He then uses transformations to derive the existence and regularity of several different forms of the superprocesses. This treatment simplifies the constructions and gives useful perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The most important feature of the book is the systematic treatment of immigration superprocesses and generalized Ornstein--Uhlenbeck processes based on skew convolution semigroups. The volume addresses researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
Measure-Valued Branching Markov Processes
Title | Measure-Valued Branching Markov Processes PDF eBook |
Author | Zenghu Li |
Publisher | Springer Nature |
Pages | 481 |
Release | 2023-04-14 |
Genre | Mathematics |
ISBN | 3662669102 |
This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein–Uhlenbeck type processes. Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson–Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skew convolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses. This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
Measure-valued Processes, Stochastic Partial Differential Equations, and Interacting Systems
Title | Measure-valued Processes, Stochastic Partial Differential Equations, and Interacting Systems PDF eBook |
Author | Donald Andrew Dawson |
Publisher | American Mathematical Soc. |
Pages | 260 |
Release | 1994-01-01 |
Genre | Mathematics |
ISBN | 9780821870440 |
The papers in this collection explore the connections between the rapidly developing fields of measure-valued processes, stochastic partial differential equations, and interacting particle systems, each of which has undergone profound development in recent years. Bringing together ideas and tools arising from these different sources, the papers include contributions to major directions of research in these fields, explore the interface between them, and describe newly developing research problems and methodologies. Several papers are devoted to different aspects of measure-valued branching processes (also called superprocesses). Some new classes of these processes are described, including branching in catalytic media, branching with change of mass, and multilevel branching. Sample path and spatial clumping properties of superprocesses are also studied. The papers on Fleming-Viot processes arising in population genetics include discussions of the role of genealogical structures and the application of the Dirichlet form methodology. Several papers are devoted to particle systems studied in statistical physics and to stochastic partial differential equations which arise as hydrodynamic limits of such systems. With overview articles on some of the important new developments in these areas, this book would be an ideal source for an advanced graduate course on superprocesses.
Branching Measure-valued Processes
Title | Branching Measure-valued Processes PDF eBook |
Author | Evgeniĭ Borisovich Dynkin |
Publisher | |
Pages | 84 |
Release | 1992 |
Genre | |
ISBN |
Stochastic Partial Differential Equations
Title | Stochastic Partial Differential Equations PDF eBook |
Author | Sergey V. Lototsky |
Publisher | Springer |
Pages | 517 |
Release | 2017-07-06 |
Genre | Mathematics |
ISBN | 3319586475 |
Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.
Spatial Branching Processes, Random Snakes and Partial Differential Equations
Title | Spatial Branching Processes, Random Snakes and Partial Differential Equations PDF eBook |
Author | Jean-Francois Le Gall |
Publisher | Birkhäuser |
Pages | 170 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3034886837 |
This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.