Brakke's Mean Curvature Flow
Title | Brakke's Mean Curvature Flow PDF eBook |
Author | Yoshihiro Tonegawa |
Publisher | Springer |
Pages | 108 |
Release | 2019-04-09 |
Genre | Mathematics |
ISBN | 9811370753 |
This book explains the notion of Brakke’s mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of k-dimensional surfaces in the n-dimensional Euclidean space (1 ≤ k in
Regularity Theory for Mean Curvature Flow
Title | Regularity Theory for Mean Curvature Flow PDF eBook |
Author | Klaus Ecker |
Publisher | Springer Science & Business Media |
Pages | 192 |
Release | 2004 |
Genre | Mathematics |
ISBN | 9780817632434 |
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.
Regularity Theory for Mean Curvature Flow
Title | Regularity Theory for Mean Curvature Flow PDF eBook |
Author | Klaus Ecker |
Publisher | Springer Science & Business Media |
Pages | 173 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 0817682104 |
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.
Mean Curvature Flow and Isoperimetric Inequalities
Title | Mean Curvature Flow and Isoperimetric Inequalities PDF eBook |
Author | Manuel Ritoré |
Publisher | Springer Science & Business Media |
Pages | 113 |
Release | 2010-01-01 |
Genre | Mathematics |
ISBN | 3034602138 |
Geometric flows have many applications in physics and geometry. The mean curvature flow occurs in the description of the interface evolution in certain physical models. This is related to the property that such a flow is the gradient flow of the area functional and therefore appears naturally in problems where a surface energy is minimized. The mean curvature flow also has many geometric applications, in analogy with the Ricci flow of metrics on abstract riemannian manifolds. One can use this flow as a tool to obtain classification results for surfaces satisfying certain curvature conditions, as well as to construct minimal surfaces. Geometric flows, obtained from solutions of geometric parabolic equations, can be considered as an alternative tool to prove isoperimetric inequalities. On the other hand, isoperimetric inequalities can help in treating several aspects of convergence of these flows. Isoperimetric inequalities have many applications in other fields of geometry, like hyperbolic manifolds.
Elliptic Regularization and Partial Regularity for Motion by Mean Curvature
Title | Elliptic Regularization and Partial Regularity for Motion by Mean Curvature PDF eBook |
Author | Tom Ilmanen |
Publisher | American Mathematical Soc. |
Pages | 106 |
Release | 1994 |
Genre | Mathematics |
ISBN | 0821825828 |
We study Brakke's motion of varifolds by mean curvature in the special case that the initial surface is an integral cycle, giving a new existence proof by mean of elliptic regularization. Under a uniqueness hypothesis, we obtain a weakly continuous family of currents solving Brakke's motion. These currents remain within the corresponding level-set motion by mean curvature, as defined by Evans-Spruck and Chen-Giga-Goto. Now let [italic capital]T0 be the reduced boundary of a bounded set of finite perimeter in [italic capital]R[superscript italic]n. If the level-set motion of the support of [italic capital]T0 does not develop positive Lebesgue measure, then there corresponds a unique integral [italic]n-current [italic capital]T, [partial derivative/boundary/degree of a polynomial symbol][italic capital]T = [italic capital]T0, whose time-slices form a unit density Brakke motion. Using Brakke's regularity theorem, spt [italic capital]T is smooth [script capital]H[superscript italic]n-almost everywhere. In consequence, almost every level-set of the level-set flow is smooth [script capital]H[superscript italic]n-almost everywhere in space-time.
Lecture Notes on Mean Curvature Flow
Title | Lecture Notes on Mean Curvature Flow PDF eBook |
Author | Carlo Mantegazza |
Publisher | Springer Science & Business Media |
Pages | 175 |
Release | 2011-07-28 |
Genre | Mathematics |
ISBN | 3034801459 |
This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years.
Space – Time – Matter
Title | Space – Time – Matter PDF eBook |
Author | Jochen Brüning |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 590 |
Release | 2018-04-09 |
Genre | Mathematics |
ISBN | 3110451530 |
This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian manifolds with special holonomy – Constructions and global properties Contributions to the spectral geometry of locally homogeneous spaces On conformally covariant differential operators and spectral theory of the holographic Laplacian Moduli and deformations Vector bundles in algebraic geometry and mathematical physics Dyson–Schwinger equations: Fix-point equations for quantum fields Hidden structure in the form factors ofN = 4 SYM On regulating the AdS superstring Constraints on CFT observables from the bootstrap program Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities Yangian symmetry in maximally supersymmetric Yang-Mills theory Wave and Dirac equations on manifolds Geometric analysis on singular spaces Singularities and long-time behavior in nonlinear evolution equations and general relativity