Bosonization and Strongly Correlated Systems

Bosonization and Strongly Correlated Systems
Title Bosonization and Strongly Correlated Systems PDF eBook
Author Alexander O. Gogolin
Publisher Cambridge University Press
Pages 452
Release 2004-12-16
Genre Science
ISBN 0521617197

Download Bosonization and Strongly Correlated Systems Book in PDF, Epub and Kindle

Detailed account of important technique for researchers and graduate students working in condensed matter and theoretical physics.

Theoretical Methods for Strongly Correlated Electrons

Theoretical Methods for Strongly Correlated Electrons
Title Theoretical Methods for Strongly Correlated Electrons PDF eBook
Author David Sénéchal
Publisher Springer Science & Business Media
Pages 370
Release 2006-05-09
Genre Science
ISBN 0387217177

Download Theoretical Methods for Strongly Correlated Electrons Book in PDF, Epub and Kindle

Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.

Quantum Field Theory in Condensed Matter Physics

Quantum Field Theory in Condensed Matter Physics
Title Quantum Field Theory in Condensed Matter Physics PDF eBook
Author Alexei M. Tsvelik
Publisher Cambridge University Press
Pages 361
Release 2007-01-18
Genre Science
ISBN 1139440500

Download Quantum Field Theory in Condensed Matter Physics Book in PDF, Epub and Kindle

This book is a course in modern quantum field theory as seen through the eyes of a theorist working in condensed matter physics. It contains a gentle introduction to the subject and therefore can be used even by graduate students. The introductory parts include a derivation of the path integral representation, Feynman diagrams and elements of the theory of metals including a discussion of Landau–Fermi liquid theory. In later chapters the discussion gradually turns to more advanced methods used in the theory of strongly correlated systems. The book contains a thorough exposition of such non-perturbative techniques as 1/N-expansion, bosonization (Abelian and non-Abelian), conformal field theory and theory of integrable systems. The book is intended for graduate students, postdoctoral associates and independent researchers working in condensed matter physics.

Self-consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems

Self-consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems
Title Self-consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems PDF eBook
Author Rudolf Haussmann
Publisher Springer Science & Business Media
Pages 181
Release 2003-07-01
Genre Science
ISBN 3540489363

Download Self-consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems Book in PDF, Epub and Kindle

This research monograph offers an introduction to advanced quantum field theoretical techniques for many-particle systems beyond perturbation theory. Several schemes for resummation of the Feynman diagrams are described. The resulting approximations are especially well suited for strongly correlated fermion and boson systems. Also considered is the crossover from BCS superconductivity to Bose--Einstein condensation in fermion systems with strong attractive interaction. In particular, a field theoretic formulation of "bosonization" is presented; it is published here for the first time. This method is applied to the fractional quantum Hall effect, to the Coulomb plasma, and to several exactly solvable models.

New Theoretical Approaches to Strongly Correlated Systems

New Theoretical Approaches to Strongly Correlated Systems
Title New Theoretical Approaches to Strongly Correlated Systems PDF eBook
Author Alexei M. Tsvelik
Publisher Springer Science & Business Media
Pages 308
Release 2012-12-06
Genre Science
ISBN 9401008388

Download New Theoretical Approaches to Strongly Correlated Systems Book in PDF, Epub and Kindle

For many years, the physics of strongly correlated systems was considered a theorists' playground, right at the border with pure mathematics, where physicists from the `real world' did not venture. The time has come, however, when healthy physics cannot exist without these techniques and results. Lectures on selected topics in the theory of strongly correlated systems are here presented by the leading experts in the field. Topics covered include a use of the form factor approach in low-dimensional systems, applications of quantum field theory to disorder, and dynamical mean field theory. The main divisions of the book deal with: I) Quantum Critical Points; (II) Strongly Correlated One-Dimensional Systems; (III) Strong Correlations and Disorder; and (IV) Dynamical Mean Field Theory.

Correlations in Low-Dimensional Quantum Gases

Correlations in Low-Dimensional Quantum Gases
Title Correlations in Low-Dimensional Quantum Gases PDF eBook
Author Guillaume Lang
Publisher Springer
Pages 204
Release 2018-12-29
Genre Science
ISBN 3030052850

Download Correlations in Low-Dimensional Quantum Gases Book in PDF, Epub and Kindle

The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered. Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.

Finite Size Effects in Correlated Electron Models

Finite Size Effects in Correlated Electron Models
Title Finite Size Effects in Correlated Electron Models PDF eBook
Author Andrei A. Zvyagin
Publisher World Scientific
Pages 380
Release 2005
Genre Science
ISBN 1860945031

Download Finite Size Effects in Correlated Electron Models Book in PDF, Epub and Kindle

The book presents exact results for one-dimensional models (including quantum spin models) of strongly correlated electrons in a comprehensive and concise manner. It incorporates important results related to magnetic and hybridization impurities in electron hosts and contains exact original results for disordered ensembles of impurities in interacting systems. These models describe a number of real low-dimensional electron systems that are widely used in nanophysics and microelectronics.An important method of modern theoretical and mathematical physics — the Bethe's Ansatz (BA) — is introduced to readers. This book presents different forms of the BA for periodic and open quantum chains. Other forms dealt with are the co-ordinate BA, thermodynamic BA, nested BA, algebraic BA, and thermal BA. The book also contains a compact description of other theoretical methods such as scaling, conformal field theory, Abelian and non-Abelian bosonizations.The book is suitable for use as a textbook by graduate students in non-perturbative methods of low-dimensional quantum many-body theory. It will also be a useful source of reference for qualified physicists, as well as non-experts in low-dimensional physics, as it explores material necessary for further studies in the fields of exactly solvable quantum models and low-dimensional correlated electron systems.