Boosting-Based Face Detection and Adaptation
Title | Boosting-Based Face Detection and Adaptation PDF eBook |
Author | Matthieu Salzmann |
Publisher | Springer Nature |
Pages | 132 |
Release | 2022-06-01 |
Genre | Computers |
ISBN | 3031018095 |
Face detection, because of its vast array of applications, is one of the most active research areas in computer vision. In this book, we review various approaches to face detection developed in the past decade, with more emphasis on boosting-based learning algorithms. We then present a series of algorithms that are empowered by the statistical view of boosting and the concept of multiple instance learning. We start by describing a boosting learning framework that is capable to handle billions of training examples. It differs from traditional bootstrapping schemes in that no intermediate thresholds need to be set during training, yet the total number of negative examples used for feature selection remains constant and focused (on the poor performing ones). A multiple instance pruning scheme is then adopted to set the intermediate thresholds after boosting learning. This algorithm generates detectors that are both fast and accurate. We then present two multiple instance learning schemes for face detection, multiple instance learning boosting (MILBoost) and winner-take-all multiple category boosting (WTA-McBoost). MILBoost addresses the uncertainty in accurately pinpointing the location of the object being detected, while WTA-McBoost addresses the uncertainty in determining the most appropriate subcategory label for multiview object detection. Both schemes can resolve the ambiguity of the labeling process and reduce outliers during training, which leads to improved detector performances. In many applications, a detector trained with generic data sets may not perform optimally in a new environment. We propose detection adaption, which is a promising solution for this problem. We present an adaptation scheme based on the Taylor expansion of the boosting learning objective function, and we propose to store the second order statistics of the generic training data for future adaptation. We show that with a small amount of labeled data in the new environment, the detector's performance can be greatly improved. We also present two interesting applications where boosting learning was applied successfully. The first application is face verification for filtering and ranking image/video search results on celebrities. We present boosted multi-task learning (MTL), yet another boosting learning algorithm that extends MILBoost with a graphical model. Since the available number of training images for each celebrity may be limited, learning individual classifiers for each person may cause overfitting. MTL jointly learns classifiers for multiple people by sharing a few boosting classifiers in order to avoid overfitting. The second application addresses the need of speaker detection in conference rooms. The goal is to find who is speaking, given a microphone array and a panoramic video of the room. We show that by combining audio and visual features in a boosting framework, we can determine the speaker's position very accurately. Finally, we offer our thoughts on future directions for face detection. Table of Contents: A Brief Survey of the Face Detection Literature / Cascade-based Real-Time Face Detection / Multiple Instance Learning for Face Detection / Detector Adaptation / Other Applications / Conclusions and Future Work
Face Detection and Adaptation
Title | Face Detection and Adaptation PDF eBook |
Author | Cha Zhang |
Publisher | Morgan & Claypool Publishers |
Pages | 140 |
Release | 2010-10-10 |
Genre | Computers |
ISBN | 1608451348 |
Face detection, because of its vast array of applications, is one of the most active research areas in computer vision. In this book, we review various approaches to face detection developed in the past decade, with more emphasis on boosting-based learning algorithms. We then present a series of algorithms that are empowered by the statistical view of boosting and the concept of multiple instance learning. We start by describing a boosting learning framework that is capable to handle billions of training examples. It differs from traditional bootstrapping schemes in that no intermediate thresholds need to be set during training, yet the total number of negative examples used for feature selection remains constant and focused (on the poor performing ones). A multiple instance pruning scheme is then adopted to set the intermediate thresholds after boosting learning. This algorithm generates detectors that are both fast and accurate. We then present two multiple instance learning schemes for face detection, multiple instance learning boosting (MILBoost) and winner-take-all multiple category boosting (WTA-McBoost). MILBoost addresses the uncertainty in accurately pinpointing the location of the object being detected, while WTA-McBoost addresses the uncertainty in determining the most appropriate subcategory label for multiview object detection. Both schemes can resolve the ambiguity of the labeling process and reduce outliers during training, which leads to improved detector performances. In many applications, a detector trained with generic data sets may not perform optimally in a new environment. We propose detection adaption, which is a promising solution for this problem. We present an adaptation scheme based on the Taylor expansion of the boosting learning objective function, and we propose to store the second order statistics of the generic training data for future adaptation. We show that with a small amount of labeled data in the new environment, the detector's performance can be greatly improved. We also present two interesting applications where boosting learning was applied successfully. The first application is face verification for filtering and ranking image/video search results on celebrities. We present boosted multi-task learning (MTL), yet another boosting learning algorithm that extends MILBoost with a graphical model. Since the available number of training images for each celebrity may be limited, learning individual classifiers for each person may cause overfitting. MTL jointly learns classifiers for multiple people by sharing a few boosting classifiers in order to avoid overfitting. The second application addresses the need of speaker detection in conference rooms. The goal is to find who is speaking, given a microphone array and a panoramic video of the room. We show that by combining audio and visual features in a boosting framework, we can determine the speaker's position very accurately. Finally, we offer our thoughts on future directions for face detection. Table of Contents: A Brief Survey of the Face Detection Literature / Cascade-based Real-Time Face Detection / Multiple Instance Learning for Face Detection / Detector Adaptation / Other Applications / Conclusions and Future Work
Image and Video Technology
Title | Image and Video Technology PDF eBook |
Author | Reinhard Klette |
Publisher | Springer |
Pages | 534 |
Release | 2014-01-31 |
Genre | Computers |
ISBN | 3642538428 |
This book constitutes the thoroughly refereed post-conference proceedings of the 6th Pacific Rim Symposium on Image and Video Technology, PSIVT 2013, held in Guanajuato, México in October/November 2013. The total of 43 revised papers was carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on image/video processing and analysis, image/video retrieval and scene understanding, applications of image and video technology, biomedical image processing and analysis, biometrics and image forensics, computational photography and arts, computer and robot vision, pattern recognition and video surveillance.
Ensemble Machine Learning
Title | Ensemble Machine Learning PDF eBook |
Author | Cha Zhang |
Publisher | Springer Science & Business Media |
Pages | 332 |
Release | 2012-02-17 |
Genre | Computers |
ISBN | 1441993258 |
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
Face Geometry and Appearance Modeling
Title | Face Geometry and Appearance Modeling PDF eBook |
Author | Zicheng Liu |
Publisher | Cambridge University Press |
Pages | 315 |
Release | 2011-04-18 |
Genre | Computers |
ISBN | 1139498878 |
Human faces are familiar to our visual systems. We easily recognize a person's face in arbitrary lighting conditions and in a variety of poses; detect small appearance changes; and notice subtle expression details. Can computer vision systems process face images as well as human vision systems can? Face image processing has potential applications in surveillance, image and video search, social networking and other domains. A comprehensive guide to this fascinating topic, this book provides a systematic description of modeling face geometry and appearance from images, including information on mathematical tools, physical concepts, image processing and computer vision techniques, and concrete prototype systems. The book will be an excellent reference for researchers and graduate students in computer vision, computer graphics and multimedia, as well as application developers who would like to gain a better understanding of the state of the art.
ICT Innovations 2015
Title | ICT Innovations 2015 PDF eBook |
Author | Suzana Loshkovska |
Publisher | Springer |
Pages | 304 |
Release | 2015-10-03 |
Genre | Computers |
ISBN | 3319257331 |
This book offers a collection of selected papers presented at the Seventh International Conference on ICT Innovations held in October 2015, in Ohrid, Macedonia, with main topic Emerging Technologies for Better Living. The conference gathered academics, professionals and industrial practitioners that work on developing the emerging technologies, systems, applications in the industrial and business arena especially innovative commercial implementations, novel application of technology, and experience in applying recent ICT research advances to practical solutions.
Web-Age Information Management
Title | Web-Age Information Management PDF eBook |
Author | Feifei Li |
Publisher | Springer |
Pages | 862 |
Release | 2014-06-14 |
Genre | Computers |
ISBN | 3319080105 |
This book constitutes the refereed proceedings of the 15th International Conference on Web-Age Information Management, WAIM 2014, held in Macau, China, in June 2014. The 48 revised full papers presented together with 35 short papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on information retrieval; recommender systems; query processing and optimization; data mining; data and information quality; information extraction; mobile and pervasive computing; stream, time-series; security and privacy; semantic web; cloud computing; new hardware; crowdsourcing; social computing.