Blowing Up of Non-Commutative Smooth Surfaces
Title | Blowing Up of Non-Commutative Smooth Surfaces PDF eBook |
Author | M. van den Bergh |
Publisher | American Mathematical Soc. |
Pages | 157 |
Release | 2001 |
Genre | Mathematics |
ISBN | 0821827545 |
This book is intended for graduate students and research mathematicians interested in associative rings and algebras, and noncommutative geometry.
Homotopy Theory of the Suspensions of the Projective Plane
Title | Homotopy Theory of the Suspensions of the Projective Plane PDF eBook |
Author | Jie Wu |
Publisher | American Mathematical Soc. |
Pages | 148 |
Release | 2003 |
Genre | Mathematics |
ISBN | 0821832395 |
Investigates the homotopy theory of the suspensions of the real projective plane. This book computes the homotopy groups up to certain range. It also studies the decompositions of the self smashes and the loop spaces with some applications to the Stiefel manifolds.
The Moduli Space of $N=1$ Superspheres with Tubes and the Sewing Operation
Title | The Moduli Space of $N=1$ Superspheres with Tubes and the Sewing Operation PDF eBook |
Author | Katrina Barron |
Publisher | American Mathematical Soc. |
Pages | 150 |
Release | 2003 |
Genre | Mathematics |
ISBN | 0821832603 |
Within the framework of complex supergeometry and motivated by two-dimensional genus-zero holomorphic $N = 1$ superconformal field theory, this book defines the moduli space of $N=1$ genus-zero super-Riemann surfaces with oriented and ordered half-infinite tubes, modulo superconformal equivalence.
The $AB$ Program in Geometric Analysis: Sharp Sobolev Inequalities and Related Problems
Title | The $AB$ Program in Geometric Analysis: Sharp Sobolev Inequalities and Related Problems PDF eBook |
Author | Olivier Druet |
Publisher | American Mathematical Soc. |
Pages | 113 |
Release | 2002 |
Genre | Mathematics |
ISBN | 0821829890 |
Function theory and Sobolev inequalities have been the target of investigation for many years. Sharp constants in these inequalities constitute a critical tool in geometric analysis. The $AB$ programme is concerned with sharp Sobolev inequalities on compact Riemannian manifolds. This text summarizes the results of contemporary research and gives an up-to-date report on the field.
Equivariant Orthogonal Spectra and $S$-Modules
Title | Equivariant Orthogonal Spectra and $S$-Modules PDF eBook |
Author | M. A. Mandell |
Publisher | American Mathematical Soc. |
Pages | 125 |
Release | 2002 |
Genre | Mathematics |
ISBN | 082182936X |
The last few years have seen a revolution in our understanding of the foundations of stable homotopy theory. Many symmetric monoidal model categories of spectra whose homotopy categories are equivalent to the stable homotopy category are now known, whereas no such categories were known before 1993. The most well-known examples are the category of $S$-modules and the category of symmetric spectra. We focus on the category of orthogonal spectra, which enjoys some of the best features of $S$-modules and symmetric spectra and which is particularly well-suited to equivariant generalization. We first complete the nonequivariant theory by comparing orthogonal spectra to $S$-modules. We then develop the equivariant theory.For a compact Lie group $G$, we construct a symmetric monoidal model category of orthogonal $G$-spectra whose homotopy category is equivalent to the classical stable homotopy category of $G$-spectra. We also complete the theory of $S_G$-modules and compare the categories of orthogonal $G$-spectra and $S_G$-modules. A key feature is the analysis of change of universe, change of group, fixed point, and orbit functors in these two highly structured categories for the study of equivariant stable homotopy theory.
The Connective K-Theory of Finite Groups
Title | The Connective K-Theory of Finite Groups PDF eBook |
Author | Robert Ray Bruner |
Publisher | American Mathematical Soc. |
Pages | 144 |
Release | 2003 |
Genre | Mathematics |
ISBN | 0821833669 |
Includes a paper that deals the connective K homology and cohomology of finite groups $G$. This title uses the methods of algebraic geometry to study the ring $ku DEGREES*(BG)$ where $ku$ denotes connective complex K-theory. It describes the variety in terms of the category of abelian $p$-subgroups of $G$ for primes $p$ dividing the group
Dynamics of Topologically Generic Homeomorphisms
Title | Dynamics of Topologically Generic Homeomorphisms PDF eBook |
Author | Ethan Akin |
Publisher | American Mathematical Soc. |
Pages | 146 |
Release | 2003 |
Genre | Mathematics |
ISBN | 0821833383 |
The goal of this work is to describe the dynamics of generic homeomorphisms of certain compact metric spaces $X$. Here ``generic'' is used in the topological sense -- a property of homeomorphisms on $X$ is generic if the set of homeomorphisms with the property contains a residual subset (in the sense of Baire category) of the space of all homeomorphisms on $X$. The spaces $X$ we consider are those with enough local homogeneity to allow certain localized perturbations of homeomorphisms; for example, any compact manifold is such a space. We show that the dynamics of a generic homeomorphism is quite complicated, with a number of distinct dynamical behaviors coexisting (some resemble subshifts of finite type, others, which we call `generalized adding machines', appear strictly periodic when viewed to any finite precision, but are not actually periodic). Such a homeomorphism has infinitely many, intricately nested attractors and repellors, and uncountably many distinct dynamically-connected components of the chain recurrent set. We single out several types of these ``chain components'', and show that each type occurs densely (in an appropriate sense) in the chain recurrent set. We also identify one type that occurs generically in the chain recurrent set. We also show that, at least for $X$ a manifold, the chain recurrent set of a generic homeomorphism is a Cantor set, so its complement is open and dense. Somewhat surprisingly, there is a residual subset of $X$ consisting of points whose limit sets are chain components of a type other than the type of chain components that are residual in the space of all chain components. In fact, for each generic homeomorphism on $X$ there is a residual subset of points of $X$ satisfying a stability condition stronger than Lyapunov stability.