Biomineralization and Biomaterials
Title | Biomineralization and Biomaterials PDF eBook |
Author | Conrado Aparicio |
Publisher | Woodhead Publishing |
Pages | 504 |
Release | 2015-09-28 |
Genre | Science |
ISBN | 1782423567 |
Biomineralization is a natural process by which living organisms form minerals in association with organic biostructures to form hybrid biological materials such as bone, enamel, dentine and nacre among others. Scientists have researched the fundamentals of these processes and the unique structures and properties of the resulting mineralized tissues. Inspired by them, new biomaterials for tissue engineering and regenerative medicine have been developed in recent years. Biomineralization and biomaterials: fundamentals and applications looks at the characteristics of these essential processes and natural materials and describes strategies and technologies to biomimetically design and produce biomaterials with improved biological performance. - Provides a thorough overview of the biomineralization process - Presents the most recent information on the natural process by which crystals in tissues form into inorganic structures such as bone, teeth, and other natural mineralized tissues - Investigates methods for improving mineralization - Explores new techniques that will help improve the biomimetic process
Biomineralization
Title | Biomineralization PDF eBook |
Author | Stephen Mann |
Publisher | |
Pages | 220 |
Release | 2001 |
Genre | Science |
ISBN | 9780198508823 |
Biomineralization
Title | Biomineralization PDF eBook |
Author | Kenneth Simkiss |
Publisher | Elsevier |
Pages | 352 |
Release | 2012-12-02 |
Genre | Science |
ISBN | 0080925847 |
Biomineralization is the process that produces the skeletons, shells, and teeth of most animals. It is also involved in magnetic orientation, gravity detection, and the storing of ions. This book compares a diverse number of systems, including mineral deposition of invertebrates, vertebrates, algae, and microorganisms. Emphasis is placed on the systems responsible for converting ions to minerals and the mechanisms and control of mineral form.
Handbook of Biomineralization
Title | Handbook of Biomineralization PDF eBook |
Author | Peter Behrens |
Publisher | John Wiley & Sons |
Pages | 456 |
Release | 2009-09-28 |
Genre | Science |
ISBN | 9783527318056 |
This first comprehensive overview of the modern aspects of biomineralization represents life and materials science at its best: Bioinspired pathways are the hot topics in many disciplines and this holds especially true for biomineralization. Here, the editors -- well-known members of associations and prestigious institutes -- have assembled an international team of renowned authors to provide first-hand research results. This second volume deals with biometic model systems in biomineralization, including the biomineral approach to bionics, bioinspired materials synthesis and bio-supported materials chemistry, encapsulation and the imaging of internal nanostructures of biominerals. An interdisciplinary must-have account, for biochemists, bioinorganic chemists, lecturers in chemistry and biochemistry, materials scientists, biologists, and solid state physicists.
Biological Inorganic Chemistry
Title | Biological Inorganic Chemistry PDF eBook |
Author | Robert R. Crichton |
Publisher | Elsevier |
Pages | 383 |
Release | 2007-12-11 |
Genre | Science |
ISBN | 0080556221 |
The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters
Magnetite Biomineralization and Magnetoreception in Organisms
Title | Magnetite Biomineralization and Magnetoreception in Organisms PDF eBook |
Author | Joseph L. Kirschvink |
Publisher | Springer Science & Business Media |
Pages | 679 |
Release | 2013-04-17 |
Genre | Science |
ISBN | 1461303133 |
The mystery of how migrating animals find their way over unfamiliar terrain has intrigued people for centuries, and has been the focus of productive research in the biological sci ences for several decades. Whether or not the earth's magnetic field had anything to do with their navigational abilities has sufaced and been dismissed several times, beginning at least in the mid to late 1800s. This topic generally remained out of the mainstream of scientific research for two reasons: (1) The apparent irreproducibility of many of the be havioral experiments which were supposed to demonstrate the existence of the magnetic sense; and (2) Perceived theoretical difficulties which were encountered when biophysi cists tried to understand how such a sensory system might operate. However, during the mid to late 1960s as the science of ethology (animal behavior) grew, it became clear from studies on bees and birds that the geomagnetic field is used under a variety of conditions. As more and more organisms were found to have similar abilities, the problem shifted back to the question as to the basis of this perception. Of the various schemes for trans ducing the geomagnetic field to the nervous system which have been proposed, the hy pothesis of magnetite-based magnetoreception discussed at length in this volume has per haps the best potential for explaining a wide range of these effects, even though this link is as yet clear only in the case of magnetotactic bacteria.
Mesoscale Chemistry
Title | Mesoscale Chemistry PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 229 |
Release | 2015-08-06 |
Genre | Science |
ISBN | 030937331X |
In the last few decades great strides have been made in chemistry at the nanoscale, where the atomic granularity of matter and the exact positions of individual atoms are key determinants of structure and dynamics. Less attention, however, has been paid to the mesoscale-it is at this scale, in the range extending from large molecules (10 nm) through viruses to eukaryotic cells (10 microns), where interesting ensemble effects and the functionality that is critical to macroscopic phenomenon begins to manifest itself and cannot be described by laws on the scale of atoms and molecules alone. To further explore how knowledge about mesoscale phenomena can impact chemical research and development activities and vice versa, the Chemical Sciences Roundtable of the National Research Council convened a workshop on mesoscale chemistry in November 2014. With a focus on the research on chemical phenomena at the mesoscale, participants examined the opportunities that utilizing those behaviors can have for developing new catalysts, adding new functionality to materials, and increasing our understanding of biological and interfacial systems. The workshop also highlighted some of the challenges for analysis and description of mesoscale structures. This report summarizes the presentations and discussion of the workshop.