Biomedical Image or Genomic Data Characterization and Radiogenomic/Image-omics

Biomedical Image or Genomic Data Characterization and Radiogenomic/Image-omics
Title Biomedical Image or Genomic Data Characterization and Radiogenomic/Image-omics PDF eBook
Author Ming Fan
Publisher Frontiers Media SA
Pages 183
Release 2022-09-27
Genre Science
ISBN 2832500935

Download Biomedical Image or Genomic Data Characterization and Radiogenomic/Image-omics Book in PDF, Epub and Kindle

Much of the emphasis in discussions about personalized medicine has been focused on the molecular characterization of tissue samples using microarray technology. However, as genetic differ between and within tumors and are quite heterogeneous, these techniques are limited. Imaging is noninvasive and is often used in routine clinical practice for disease diagnosis, treatment, and prognosis. Imaging is useful to guide disease therapy by providing a more comprehensive view of the entire lesion and it can be used on an ongoing basis to monitor lesion growth and progression or its response to treatment. The imaging includes but not limited to ultrasound, X-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET). Radiomics refers to the conversion of images to high dimensional data and the subsequent mining for characterization of biology and ultimately to improve disease management for patients. Radiogenomics investigates relationships between imaging features and genomics, which represents the correlation between the anatomical-histological level to the genomic level. With advanced artificial intelligence methods, especially deep learning, data processing, feature extraction and data integration have been greatly improved. The topic is about artificial intelligence methods in biomedical images and genomics data for disease diagnosis, treatment, and prognosis, as listed here: • Biomarker identification from biomedical images to predict disease diagnosis, treatment, and prognosis • Radiogenomics/image-omics in identifying imaging biomarkers associated with molecular characteristics of the disease. • Machine learning/deep learning methods in biomedical imaging or genomics for disease detection and precision medicine. • Prediction of histological characteristics of disease based on biomedical imaging. • Integration of radiomics and genomics features for disease diagnosis, prognosis, and prediction medicine • Multimodality images or multi-omics data integration methods

Big Data in Omics and Imaging

Big Data in Omics and Imaging
Title Big Data in Omics and Imaging PDF eBook
Author MOMIAO. XIONG
Publisher CRC Press
Pages 668
Release 2021-06-30
Genre
ISBN 9781032095981

Download Big Data in Omics and Imaging Book in PDF, Epub and Kindle

Big Data in Omics and Imaging: Association Analysis addresses the recent development of association analysis and machine learning for both population and family genomic data in sequencing era. It is unique in that it presents both hypothesis testing and a data mining approach to holistically dissecting the genetic structure of complex traits and to designing efficient strategies for precision medicine. The general frameworks for association analysis and machine learning, developed in the text, can be applied to genomic, epigenomic and imaging data. FEATURES Bridges the gap between the traditional statistical methods and computational tools for small genetic and epigenetic data analysis and the modern advanced statistical methods for big data Provides tools for high dimensional data reduction Discusses searching algorithms for model and variable selection including randomization algorithms, Proximal methods and matrix subset selection Provides real-world examples and case studies Will have an accompanying website with R code The book is designed for graduate students and researchers in genomics, bioinformatics, and data science. It represents the paradigm shift of genetic studies of complex diseases- from shallow to deep genomic analysis, from low-dimensional to high dimensional, multivariate to functional data analysis with next-generation sequencing (NGS) data, and from homogeneous populations to heterogeneous population and pedigree data analysis. Topics covered are: advanced matrix theory, convex optimization algorithms, generalized low rank models, functional data analysis techniques, deep learning principle and machine learning methods for modern association, interaction, pathway and network analysis of rare and common variants, biomarker identification, disease risk and drug response prediction.

Big Data in Omics and Imaging

Big Data in Omics and Imaging
Title Big Data in Omics and Imaging PDF eBook
Author MOMIAO. XIONG
Publisher CRC Press
Pages 736
Release 2021-06-30
Genre
ISBN 9781032095233

Download Big Data in Omics and Imaging Book in PDF, Epub and Kindle

Big Data in Omics and Imaging: Integrated Analysis and Causal Inference addresses the recent development of integrated genomic, epigenomic and imaging data analysis and causal inference in big data era. Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), genome-wide expression studies (GWES), and epigenome-wide association studies (EWAS), the overall contribution of the new identified genetic variants is small and a large fraction of genetic variants is still hidden. Understanding the etiology and causal chain of mechanism underlying complex diseases remains elusive. It is time to bring big data, machine learning and causal revolution to developing a new generation of genetic analysis for shifting the current paradigm of genetic analysis from shallow association analysis to deep causal inference and from genetic analysis alone to integrated omics and imaging data analysis for unraveling the mechanism of complex diseases. FEATURES Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently. Introduce causal inference theory to genomic, epigenomic and imaging data analysis Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies. Bridge the gap between the traditional association analysis and modern causation analysis Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease Develop causal machine learning methods integrating causal inference and machine learning Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks The book is designed for graduate students and researchers in genomics, epigenomics, medical image, bioinformatics, and data science. Topics covered are: mathematical formulation of causal inference, information geometry for causal inference, topology group and Haar measure, additive noise models, distance correlation, multivariate causal inference and causal networks, dynamic causal networks, multivariate and functional structural equation models, mixed structural equation models, causal inference with confounders, integer programming, deep learning and differential equations for wearable computing, genetic analysis of function-valued traits, RNA-seq data analysis, causal networks for genetic methylation analysis, gene expression and methylation deconvolution, cell -specific causal networks, deep learning for image segmentation and image analysis, imaging and genomic data analysis, integrated multilevel causal genomic, epigenomic and imaging data analysis.

Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes

Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes
Title Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes PDF eBook
Author Karâa, Wahiba Ben Abdessalem
Publisher IGI Global
Pages 441
Release 2015-11-03
Genre Medical
ISBN 1466688122

Download Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes Book in PDF, Epub and Kindle

Every second, users produce large amounts of image data from medical and satellite imaging systems. Image mining techniques that are capable of extracting useful information from image data are becoming increasingly useful, especially in medicine and the health sciences. Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes addresses major techniques regarding image processing as a tool for disease identification and diagnosis, as well as treatment recommendation. Highlighting current research intended to advance the medical field, this publication is essential for use by researchers, advanced-level students, academicians, medical professionals, and technology developers. An essential addition to the reference material available in the field of medicine, this timely publication covers a range of applied research on data mining, image processing, computational simulation, data visualization, and image retrieval.

Handbook of Biomedical Image Analysis

Handbook of Biomedical Image Analysis
Title Handbook of Biomedical Image Analysis PDF eBook
Author David Wilson
Publisher Springer Science & Business Media
Pages 583
Release 2007-04-25
Genre Medical
ISBN 0306486083

Download Handbook of Biomedical Image Analysis Book in PDF, Epub and Kindle

Our goal is to develop automated methods for the segmentation of thr- dimensional biomedical images. Here, we describe the segmentation of c- focal microscopy images of bee brains (20 individuals) by registration to one or several atlas images. Registration is performed by a highly parallel imp- mentation of an entropy-based nonrigid registration algorithm using B-spline transformations. We present and evaluate different methods to solve the cor- spondence problem in atlas based registration. An image can be segmented by registering it to an individual atlas, an average atlas, or multiple atlases. When registering to multiple atlases, combining the individual segmentations into a ?nalsegmentationcanbeachievedbyatlasselection,ormulticlassi?erdecision fusion. Wedescribeallthesemethodsandevaluatethesegmentationaccuracies that they achieve by performing experiments with electronic phantoms as well as by comparing their outputs to a manual gold standard. The present work is focused on the mathematical and computational t- ory behind a technique for deformable image registration termed Hyperelastic Warping, and demonstration of the technique via applications in image regist- tion and strain measurement. The approach combines well-established prin- ples of nonlinear continuum mechanics with forces derived directly from thr- dimensional image data to achieve registration. The general approach does not require the de?nition of landmarks, ?ducials, or surfaces, although it can - commodate these if available. Representative problems demonstrate the robust and ?exible nature of the approach. Three-dimensional registration methods are introduced for registering MRI volumes of the pelvis and prostate. The chapter ?rst reviews the applications, xi xii Preface challenges, and previous methods of image registration in the prostate.

Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques

Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques
Title Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques PDF eBook
Author Gonzalez, Fabio A.
Publisher IGI Global
Pages 390
Release 2009-12-31
Genre Computers
ISBN 1605669571

Download Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques Book in PDF, Epub and Kindle

Medical images are at the base of many routine clinical decisions and their influence continues to increase in many fields of medicine. Since the last decade, computers have become an invaluable tool for supporting medical image acquisition, processing, organization and analysis. Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques provides a panorama of the current boundary between biomedical complexity coming from the medical image context and the multiple techniques which have been used for solving many of these problems. This innovative publication serves as a leading industry reference as well as a source of creative ideas for applications of medical issues.

Radiomics and Radiogenomics in Neuro-Oncology

Radiomics and Radiogenomics in Neuro-Oncology
Title Radiomics and Radiogenomics in Neuro-Oncology PDF eBook
Author Sanjay Saxena
Publisher Elsevier
Pages 330
Release 2024-03-29
Genre Medical
ISBN 0443185077

Download Radiomics and Radiogenomics in Neuro-Oncology Book in PDF, Epub and Kindle

Neuro-oncology broadly encompasses life-threatening brain and spinal cord malignancies, including primary lesions and lesions metastasizing to the central nervous system. It is well suited for diagnosis, classification, and prognosis as well as assessing treatment response. Radiomics and Radiogenomics (R-n-R) have become two central pillars in precision medicine for neuro-oncology.Radiomics is an approach to medical imaging used to extract many quantitative imaging features using different data characterization algorithms, while Radiogenomics, which has recently emerged as a novel mechanism in neuro-oncology research, focuses on the relationship of imaging phenotype and genetics of cancer. Due to the exponential progress of different computational algorithms, AI methods are composed to advance the precision of diagnostic and therapeutic approaches in neuro-oncology.The field of radiomics has been and definitely will remain at the lead of this emerging discipline due to its efficiency in the field of neuro-oncology. Several AI approaches applied to conventional and advanced medical imaging data from the perspective of radiomics are very efficient for tasks such as survival prediction, heterogeneity analysis of cancer, pseudo progression analysis, and infiltrating tumors. Radiogenomics advances our understanding and knowledge of cancer biology, letting noninvasive sampling of the molecular atmosphere with high spatial resolution along with a systems-level understanding of causal heterogeneous molecular and cellular processes. These AI-based R-n-R tools have the potential to stratify patients into more precise initial diagnostic and therapeutic pathways and permit better dynamic treatment monitoring in this period of personalized medicine. While extremely promising, the clinical acceptance of R-n-R methods and approaches will primarily hinge on their resilience to non-standardization across imaging protocols and their capability to show reproducibility across large multi-institutional cohorts.Radiomics and Radiogenomics in Neuro-Oncology: An Artificial Intelligence Paradigm provides readers with a broad and detailed framework for R-n-R approaches with AI in neuro-oncology, the description of cancer biology and genomics study of cancer, and the methods usually implemented for analyzing. Readers will also learn about the current solutions R-n-R can offer for personalized treatments of patients, limitations, and prospects. There is comprehensive coverage of information based on radiomics, radiogenomics, cancer biology, and medical image analysis viewpoints on neuro-oncology, so this in-depth coverage is divided into two Volumes.Volume 1: Radiogenomics Flow Using Artificial Intelligence provides coverage of genomics and molecular study of brain cancer, medical imaging modalities and analysis in neuro-oncology, and prognostic and predictive models using radiomics.Volume 2: Genetics and Clinical Applications provides coverage of imaging signatures for brain cancer molecular characteristics, clinical applications of R-n-R in neuro-oncology, and Machine Learning and Deep Learning AI approaches for R-n-R in neuro-oncology. - Includes coverage on the foundational concepts of the emerging fields of radiomics and radiogenomics - Covers neural engineering modeling and AI algorithms for the imaging, diagnosis, and predictive modeling of neuro-oncology - Presents crucial technologies and software platforms, along with advanced brain imaging techniques such as quantitative imaging using CT, PET, and MRI - Provides in-depth technical coverage of computational modeling techniques and applied mathematics for brain tumor segmentation and radiomics features such as extraction and selection