Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques
Title | Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques PDF eBook |
Author | Gonzalez, Fabio A. |
Publisher | IGI Global |
Pages | 390 |
Release | 2009-12-31 |
Genre | Computers |
ISBN | 1605669571 |
Medical images are at the base of many routine clinical decisions and their influence continues to increase in many fields of medicine. Since the last decade, computers have become an invaluable tool for supporting medical image acquisition, processing, organization and analysis. Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques provides a panorama of the current boundary between biomedical complexity coming from the medical image context and the multiple techniques which have been used for solving many of these problems. This innovative publication serves as a leading industry reference as well as a source of creative ideas for applications of medical issues.
Deep Learning for Medical Image Analysis
Title | Deep Learning for Medical Image Analysis PDF eBook |
Author | S. Kevin Zhou |
Publisher | Academic Press |
Pages | 544 |
Release | 2023-11-23 |
Genre | Computers |
ISBN | 0323858880 |
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Deep Learning Applications in Medical Imaging
Title | Deep Learning Applications in Medical Imaging PDF eBook |
Author | Saxena, Sanjay |
Publisher | IGI Global |
Pages | 274 |
Release | 2020-10-16 |
Genre | Medical |
ISBN | 1799850722 |
Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.
Medical Image Analysis
Title | Medical Image Analysis PDF eBook |
Author | Alejandro Frangi |
Publisher | Academic Press |
Pages | 700 |
Release | 2023-09-20 |
Genre | Technology & Engineering |
ISBN | 0128136588 |
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing
Machine Learning and Medical Imaging
Title | Machine Learning and Medical Imaging PDF eBook |
Author | Guorong Wu |
Publisher | Academic Press |
Pages | 514 |
Release | 2016-08-11 |
Genre | Computers |
ISBN | 0128041145 |
Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques
Medical Imaging
Title | Medical Imaging PDF eBook |
Author | K.C. Santosh |
Publisher | CRC Press |
Pages | 251 |
Release | 2019-08-20 |
Genre | Computers |
ISBN | 0429642490 |
Winner of the "Outstanding Academic Title" recognition by Choice for the 2020 OAT Awards. The Choice OAT Award represents the highest caliber of scholarly titles that have been reviewed by Choice and conveys the extraordinary recognition of the academic community. The book discusses varied topics pertaining to advanced or up-to-date techniques in medical imaging using artificial intelligence (AI), image recognition (IR) and machine learning (ML) algorithms/techniques. Further, coverage includes analysis of chest radiographs (chest x-rays) via stacked generalization models, TB type detection using slice separation approach, brain tumor image segmentation via deep learning, mammogram mass separation, epileptic seizures, breast ultrasound images, knee joint x-ray images, bone fracture detection and labeling, and diabetic retinopathy. It also reviews 3D imaging in biomedical applications and pathological medical imaging.
Biomedical Data Mining for Information Retrieval
Title | Biomedical Data Mining for Information Retrieval PDF eBook |
Author | Sujata Dash |
Publisher | John Wiley & Sons |
Pages | 450 |
Release | 2021-08-24 |
Genre | Computers |
ISBN | 111971124X |
BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.