Biologically Inspired Robot Behavior Engineering

Biologically Inspired Robot Behavior Engineering
Title Biologically Inspired Robot Behavior Engineering PDF eBook
Author Richard J. Duro
Publisher Physica
Pages 450
Release 2013-06-05
Genre Technology & Engineering
ISBN 3790817759

Download Biologically Inspired Robot Behavior Engineering Book in PDF, Epub and Kindle

The book presents an overview of current research on biologically inspired autonomous robotics from the perspective of some of the most relevant researchers in this area. The book crosses several boundaries in the field of robotics and the closely related field of artificial life. The key aim throughout the book is to obtain autonomy at different levels. From the basic motor behavior in some exotic robot architectures right through to the planning of complex behaviors or the evolution of robot control structures, the book explores different degrees and definitions of autonomous behavior. These behaviors are supported by a wide variety of modeling techniques: structural grammars, neural networks, and fuzzy logic and evolution underlies many of the development processes. Thus this text can be used by scientists and students interested in these areas and provides a general view of the field for a more general audience.

Bio-Inspired Robotics

Bio-Inspired Robotics
Title Bio-Inspired Robotics PDF eBook
Author Toshio Fukuda
Publisher MDPI
Pages 555
Release 2018-11-07
Genre Technology & Engineering
ISBN 303897045X

Download Bio-Inspired Robotics Book in PDF, Epub and Kindle

This book is a printed edition of the Special Issue "Bio-Inspired Robotics" that was published in Applied Sciences

Biologically Inspired Robotics

Biologically Inspired Robotics
Title Biologically Inspired Robotics PDF eBook
Author Yunhui Liu
Publisher CRC Press
Pages 340
Release 2017-12-19
Genre Medical
ISBN 1439854971

Download Biologically Inspired Robotics Book in PDF, Epub and Kindle

Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers.

Human Modeling for Bio-Inspired Robotics

Human Modeling for Bio-Inspired Robotics
Title Human Modeling for Bio-Inspired Robotics PDF eBook
Author Jun Ueda
Publisher Academic Press
Pages 360
Release 2016-09-02
Genre Technology & Engineering
ISBN 0128031522

Download Human Modeling for Bio-Inspired Robotics Book in PDF, Epub and Kindle

Human Modelling for Bio-inspired Robotics: Mechanical Engineering in Assistive Technologies presents the most cutting-edge research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications. Intended to provide researchers both in academia and industry with key content on which to base their developments, this book is organized and written by senior experts in their fields. Human Modeling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies offers a system-level investigation into human mechanisms that inspire the development of assistive technologies and humanoid robotics, including topics in modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation and integration. Each chapter is written by a subject expert and discusses its background, research challenges, key outcomes, application, and future trends. This book will be especially useful for academic and industry researchers in this exciting field, as well as graduate-level students to bring them up to speed with the latest technology in mechanical design and control aspects of the area. Previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing is assumed. Presents the most recent research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications Covers background information and fundamental concepts of human modelling Includes modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation, integration, and safety issues Assumes previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing

Biologically Inspired Intelligent Robots

Biologically Inspired Intelligent Robots
Title Biologically Inspired Intelligent Robots PDF eBook
Author Yoseph Bar-Cohen
Publisher SPIE Press
Pages 414
Release 2003
Genre Computers
ISBN 9780819448729

Download Biologically Inspired Intelligent Robots Book in PDF, Epub and Kindle

The multidisciplinary issues involved in the development of biologically inspired intelligent robots include materials, actuators, sensors, structures, functionality, control, intelligence, and autonomy. This book reviews various aspects ranging from the biological model to the vision for the future.

Autonomous Robots

Autonomous Robots
Title Autonomous Robots PDF eBook
Author George A. Bekey
Publisher MIT Press
Pages 612
Release 2005
Genre Autonomous robots
ISBN 9780262025782

Download Autonomous Robots Book in PDF, Epub and Kindle

An introduction to the science and practice of autonomous robots that reviews over 300 current systems and examines the underlying technology.

Neurobiology of Motor Control

Neurobiology of Motor Control
Title Neurobiology of Motor Control PDF eBook
Author Scott L. Hooper
Publisher John Wiley & Sons
Pages 510
Release 2017-09-05
Genre Medical
ISBN 1118873408

Download Neurobiology of Motor Control Book in PDF, Epub and Kindle

A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.