Biological Magnetic Materials and Applications
Title | Biological Magnetic Materials and Applications PDF eBook |
Author | Tadashi Matsunaga |
Publisher | Springer |
Pages | 198 |
Release | 2018-07-11 |
Genre | Science |
ISBN | 9811080690 |
This book addresses the biologically controlled synthesis of magnetic materials, and its applications in bio-inspired design and synthesis. It highlights several key aspects of biologically produced magnetic materials – (i) organisms that biologically synthesize and utilize magnetic materials; (ii) formation mechanisms; (iii) how these biological formation routes yield various phases and morphologies; and (iv) the resultant magnetic and structural properties – and describes diverse bio-inspired approaches to utilizing magnetic materials in applications ranging from semiconductor to health industries. In addition, the book discusses the recent industrial use of magnetic materials to develop scalable technologies that encompass protein displays, drug-delivery, biophysical separations, and medical diagnostics, as well as outlining future next-generation applications. As such, it offers valuable insights for all scientists interested in using multidisciplinary fields to overcome current obstacles, and in gaining multifaceted expertise in magnetic materials bionanotechnology.
Fundamentals and Applications of Magnetic Materials
Title | Fundamentals and Applications of Magnetic Materials PDF eBook |
Author | Kannan M. Krishnan |
Publisher | Oxford University Press |
Pages | 816 |
Release | 2016-10-06 |
Genre | Science |
ISBN | 0191066400 |
Students and researchers looking for a comprehensive textbook on magnetism, magnetic materials and related applications will find in this book an excellent explanation of the field. Chapters progress logically from the physics of magnetism, to magnetic phenomena in materials, to size and dimensionality effects, to applications. Beginning with a description of magnetic phenomena and measurements on a macroscopic scale, the book then presents discussions of intrinsic and phenomenological concepts of magnetism such as electronic magnetic moments and classical, quantum, and band theories of magnetic behavior. It then covers ordered magnetic materials (emphasizing their structure-sensitive properties) and magnetic phenomena, including magnetic anisotropy, magnetostriction, and magnetic domain structures and dynamics. What follows is a comprehensive description of imaging methods to resolve magnetic microstructures (domains) along with an introduction to micromagnetic modeling. The book then explores in detail size (small particles) and dimensionality (surface and interfaces) effects — the underpinnings of nanoscience and nanotechnology that are brought into sharp focus by magnetism. The hallmark of modern science is its interdisciplinarity, and the second half of the book offers interdisciplinary discussions of information technology, magnetoelectronics and the future of biomedicine via recent developments in magnetism. Modern materials with tailored properties require careful synthetic and characterization strategies. The book also includes relevant details of the chemical synthesis of small particles and the physical deposition of ultra thin films. In addition, the book presents details of state-of-the-art characterization methods and summaries of representative families of materials, including tables of properties. CGS equivalents (to SI) are included.
High Magnetic Field Science and Its Application in the United States
Title | High Magnetic Field Science and Its Application in the United States PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 233 |
Release | 2013-12-25 |
Genre | Science |
ISBN | 0309286344 |
The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.
Biomedical Applications of Magnetic Particles
Title | Biomedical Applications of Magnetic Particles PDF eBook |
Author | Jeffrey N. Anker |
Publisher | CRC Press |
Pages | 356 |
Release | 2020-12-17 |
Genre | Technology & Engineering |
ISBN | 1439839697 |
Biomedical Applications of Magnetic Particles discusses fundamental magnetic nanoparticle physics and chemistry and explores important biomedical applications and future challenges. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, detailing methods to characterize magnetic particles, and quantitatively describing the applied magnetic forces, torques, and the resultant particle motions. The second section describes the wide range of biomedical applications, including chemical sensors, cellular actuators, drug delivery, magnetic hyperthermia, magnetic resonance imaging contrast enhancement, and toxicity. Additional key features include: Covers both introduction to physics and characterization of magnetic nanoparticles and the state of the art in biomedical applications Authoritative reference for scientists and engineers for all new or old to the field Describes how the size of magnetic nanoparticles affects their magnetic properties, colloidal properties, and biological properties. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers.
Nanostructured Magnetic Materials and their Applications
Title | Nanostructured Magnetic Materials and their Applications PDF eBook |
Author | Bekir Aktas |
Publisher | Springer Science & Business Media |
Pages | 441 |
Release | 2013-06-05 |
Genre | Science |
ISBN | 140202200X |
Interest in research on nanoscale materials is steadily increasing: nano-structured magnetic materials exhibit new and interesting physical properties, which cannot be found in the bulk. Many of these unique properties have great potential for technical applications in magneto-sensors, bio-sensors, magneto-electronics, data storage, magnetic heads of computer hard disks, single-electron devises, microwave electronic devices, etc. Current research concentrates on device design, synthesis and the characterization of nanostructured materials. The contributions to this book concentrate on magnetic properties of nanoscale magnetic materials, especially on fabrication and characterization, and the physics underlying the unique properties of these structures and devices.
Magnetic Nanomaterials
Title | Magnetic Nanomaterials PDF eBook |
Author | Stefan H Bossmann |
Publisher | Royal Society of Chemistry |
Pages | 281 |
Release | 2017-06-02 |
Genre | Science |
ISBN | 178262788X |
Details the frontier of magnetic nanotechnology from the persepctive of scientists, engineers and physicians that have shaped this unique and highly collaborative field of research.
Nanostructured Magnetic Materials and Their Applications
Title | Nanostructured Magnetic Materials and Their Applications PDF eBook |
Author | Donglu Shi |
Publisher | Springer |
Pages | 302 |
Release | 2008-01-11 |
Genre | Science |
ISBN | 3540368728 |
T a a a a a . T a a- a - a a a a a a a a b a a a a a- a .T a a a b a a a a .I b a- a a a a a a ,a a a .O a a a a a a a a a b a a a a a a a . T a , a a a a b a a ? . T a a a a .T a a a , a a a a a a a a a . Ab ba a a b a a a a a a a a . T a a a a a a b a a - .Ma a a a a a a a a a a a , a - , , a a a , a a a , , a , .I a , a , GMR a a a a a a a a a , a a , a RAM .E , a a , , a . a b a - a.T a ab a a a a a a a a a . I , a 21 a a a a a a a a .