Bioinspired Actuators and Sensors
Title | Bioinspired Actuators and Sensors PDF eBook |
Author | Minoru Taya |
Publisher | Cambridge University Press |
Pages | 539 |
Release | 2016-10-13 |
Genre | Medical |
ISBN | 1107065380 |
From experts in engineering and biology, this is the first book to integrate sensor and actuator technology with bioinspired design.
Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems
Title | Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems PDF eBook |
Author | Derek A. Paley |
Publisher | Springer Nature |
Pages | 301 |
Release | 2020-11-06 |
Genre | Technology & Engineering |
ISBN | 303050476X |
This book includes representative research from the state‐of‐the‐art in the emerging field of soft robotics, with a special focus on bioinspired soft robotics for underwater applications. Topics include novel materials, sensors, actuators, and system design for distributed estimation and control of soft robotic appendages inspired by the octopus and seastar. It summarizes the latest findings in an emerging field of bioinspired soft robotics for the underwater domain, primarily drawing from (but not limited to) an ongoing research program in bioinspired autonomous systems sponsored by the Office of Naval Research. The program has stimulated cross‐disciplinary research in biology, material science, computational mechanics, and systems and control for the purpose of creating novel robotic appendages for maritime applications. The book collects recent results in this area.
Bioinspired Actuators and Sensors
Title | Bioinspired Actuators and Sensors PDF eBook |
Author | Minoru Taya |
Publisher | |
Pages | 536 |
Release | 2015 |
Genre | HEALTH & FITNESS |
ISBN | 9781107588271 |
From experts in engineering and biology, this is the first book to integrate sensor and actuator technology with bioinspired design.
Biomimetic Technologies
Title | Biomimetic Technologies PDF eBook |
Author | Trung Dung Ngo |
Publisher | Woodhead Publishing |
Pages | 394 |
Release | 2015-07-24 |
Genre | Computers |
ISBN | 0081002602 |
Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG's) and biologically inspired antenna arrays. - Includes a solid overview of modern artificial intelligence as background to the principles of biomimetic engineering - Reviews a selection of key bio-inspired materials and sensors, highlighting their current strengths and future potential - Features cutting-edge examples of biomimetic technologies employed for a broad range of applications
Biologically Inspired Robotics
Title | Biologically Inspired Robotics PDF eBook |
Author | Yunhui Liu |
Publisher | CRC Press |
Pages | 343 |
Release | 2011-12-21 |
Genre | Medical |
ISBN | 1439854882 |
Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.
Bioinspired Smell and Taste Sensors
Title | Bioinspired Smell and Taste Sensors PDF eBook |
Author | Ping Wang |
Publisher | Springer |
Pages | 330 |
Release | 2015-10-03 |
Genre | Science |
ISBN | 9401773335 |
This book discusses the field of bioinspired smell and taste sensors which includes many new areas: sensitive materials, physiological modelling and simulation, and more. Similar to biological chemical sensing systems, bioinspired smell and taste sensors are characterized with fast responsive, high specificity and sensitivity. One of the most important parts of the field is that of sensitive elements originated from biological components, which enable the detection of chemical signals by mimicking the biological mechanisms. This book detailed describes processing, devices, recognition principles of sensitive materials, and concrete realizations. It is written for researchers, engineers and biologists who engages in interdisciplinary research and applications. Dr. Ping Wang is a professor at Zhejiang University, Hangzhou, China. Dr. Qingjun Liu is a professor at Zhejiang University, Hangzhou, China. Dr. Chunsheng Wu is an associated professor at Zhejiang University, Hangzhou, China. Dr. K. Jimmy Hsia is a professor at University of Illinois at Urbana-Champaign, Urbana, USA.
Neurobiology of Motor Control
Title | Neurobiology of Motor Control PDF eBook |
Author | Scott L. Hooper |
Publisher | John Wiley & Sons |
Pages | 510 |
Release | 2017-09-05 |
Genre | Medical |
ISBN | 1118873408 |
A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.