Bijective Combinatorics
Title | Bijective Combinatorics PDF eBook |
Author | Nicholas Loehr |
Publisher | CRC Press |
Pages | 600 |
Release | 2011-02-10 |
Genre | Computers |
ISBN | 1439848866 |
Bijective proofs are some of the most elegant and powerful techniques in all of mathematics. Suitable for readers without prior background in algebra or combinatorics, Bijective Combinatorics presents a general introduction to enumerative and algebraic combinatorics that emphasizes bijective methods.The text systematically develops the mathematical
Combinatorics
Title | Combinatorics PDF eBook |
Author | Nicholas Loehr |
Publisher | CRC Press |
Pages | 849 |
Release | 2017-08-10 |
Genre | Mathematics |
ISBN | 149878027X |
Combinatorics, Second Edition is a well-rounded, general introduction to the subjects of enumerative, bijective, and algebraic combinatorics. The textbook emphasizes bijective proofs, which provide elegant solutions to counting problems by setting up one-to-one correspondences between two sets of combinatorial objects. The author has written the textbook to be accessible to readers without any prior background in abstract algebra or combinatorics. Part I of the second edition develops an array of mathematical tools to solve counting problems: basic counting rules, recursions, inclusion-exclusion techniques, generating functions, bijective proofs, and linear algebraic methods. These tools are used to analyze combinatorial structures such as words, permutations, subsets, functions, graphs, trees, lattice paths, and much more. Part II cover topics in algebraic combinatorics including group actions, permutation statistics, symmetric functions, and tableau combinatorics. This edition provides greater coverage of the use of ordinary and exponential generating functions as a problem-solving tool. Along with two new chapters, several new sections, and improved exposition throughout, the textbook is brimming with many examples and exercises of various levels of difficulty.
Studies in Algorithmic and Bijective Combinatorics
Title | Studies in Algorithmic and Bijective Combinatorics PDF eBook |
Author | Kiem-Phong Vo |
Publisher | |
Pages | 352 |
Release | 1981 |
Genre | Algorithms |
ISBN |
Combinatorics: The Art of Counting
Title | Combinatorics: The Art of Counting PDF eBook |
Author | Bruce E. Sagan |
Publisher | American Mathematical Soc. |
Pages | 304 |
Release | 2020-10-16 |
Genre | Education |
ISBN | 1470460327 |
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Analytic Combinatorics
Title | Analytic Combinatorics PDF eBook |
Author | Marni Mishna |
Publisher | CRC Press |
Pages | 253 |
Release | 2019-11-27 |
Genre | Mathematics |
ISBN | 1351036815 |
Analytic Combinatorics: A Multidimensional Approach is written in a reader-friendly fashion to better facilitate the understanding of the subject. Naturally, it is a firm introduction to the concept of analytic combinatorics and is a valuable tool to help readers better understand the structure and large-scale behavior of discrete objects. Primarily, the textbook is a gateway to the interactions between complex analysis and combinatorics. The study will lead readers through connections to number theory, algebraic geometry, probability and formal language theory. The textbook starts by discussing objects that can be enumerated using generating functions, such as tree classes and lattice walks. It also introduces multivariate generating functions including the topics of the kernel method, and diagonal constructions. The second part explains methods of counting these objects, which involves deep mathematics coming from outside combinatorics, such as complex analysis and geometry. Features Written with combinatorics-centric exposition to illustrate advanced analytic techniques Each chapter includes problems, exercises, and reviews of the material discussed in them Includes a comprehensive glossary, as well as lists of figures and symbols About the author Marni Mishna is a professor of mathematics at Simon Fraser University in British Columbia. Her research investigates interactions between discrete structures and many diverse areas such as representation theory, functional equation theory, and algebraic geometry. Her specialty is the development of analytic tools to study the large-scale behavior of discrete objects.
Formal Power Series and Algebraic Combinatorics
Title | Formal Power Series and Algebraic Combinatorics PDF eBook |
Author | Daniel Krob |
Publisher | Springer Science & Business Media |
Pages | 815 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 3662041669 |
This book contains the extended abstracts presented at the 12th International Conference on Power Series and Algebraic Combinatorics (FPSAC '00) that took place at Moscow State University, June 26-30, 2000. These proceedings cover the most recent trends in algebraic and bijective combinatorics, including classical combinatorics, combinatorial computer algebra, combinatorial identities, combinatorics of classical groups, Lie algebra and quantum groups, enumeration, symmetric functions, young tableaux etc...
The Symmetric Group
Title | The Symmetric Group PDF eBook |
Author | Bruce E. Sagan |
Publisher | Springer Science & Business Media |
Pages | 254 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475768044 |
This book brings together many of the important results in this field. From the reviews: ""A classic gets even better....The edition has new material including the Novelli-Pak-Stoyanovskii bijective proof of the hook formula, Stanley’s proof of the sum of squares formula using differential posets, Fomin’s bijective proof of the sum of squares formula, group acting on posets and their use in proving unimodality, and chromatic symmetric functions." --ZENTRALBLATT MATH