Big Data for Regional Science
Title | Big Data for Regional Science PDF eBook |
Author | Laurie A Schintler |
Publisher | Routledge |
Pages | 527 |
Release | 2017-08-07 |
Genre | Business & Economics |
ISBN | 1351983253 |
Recent technological advancements and other related factors and trends are contributing to the production of an astoundingly large and rapidly accelerating collection of data, or ‘Big Data’. This data now allows us to examine urban and regional phenomena in ways that were previously not possible. Despite the tremendous potential of big data for regional science, its use and application in this context is fraught with issues and challenges. This book brings together leading contributors to present an interdisciplinary, agenda-setting and action-oriented platform for research and practice in the urban and regional community. This book provides a comprehensive, multidisciplinary and cutting-edge perspective on big data for regional science. Chapters contain a collection of research notes contributed by experts from all over the world with a wide array of disciplinary backgrounds. The content is organized along four themes: sources of big data; integration, processing and management of big data; analytics for big data; and, higher level policy and programmatic considerations. As well as concisely and comprehensively synthesising work done to date, the book also considers future challenges and prospects for the use of big data in regional science. Big Data for Regional Science provides a seminal contribution to the field of regional science and will appeal to a broad audience, including those at all levels of academia, industry, and government.
Big Data for Regional Science
Title | Big Data for Regional Science PDF eBook |
Author | Laurie A Schintler |
Publisher | Routledge |
Pages | 350 |
Release | 2017-08-07 |
Genre | Business & Economics |
ISBN | 1351983261 |
Recent technological advancements and other related factors and trends are contributing to the production of an astoundingly large and rapidly accelerating collection of data, or ‘Big Data’. This data now allows us to examine urban and regional phenomena in ways that were previously not possible. Despite the tremendous potential of big data for regional science, its use and application in this context is fraught with issues and challenges. This book brings together leading contributors to present an interdisciplinary, agenda-setting and action-oriented platform for research and practice in the urban and regional community. This book provides a comprehensive, multidisciplinary and cutting-edge perspective on big data for regional science. Chapters contain a collection of research notes contributed by experts from all over the world with a wide array of disciplinary backgrounds. The content is organized along four themes: sources of big data; integration, processing and management of big data; analytics for big data; and, higher level policy and programmatic considerations. As well as concisely and comprehensively synthesising work done to date, the book also considers future challenges and prospects for the use of big data in regional science. Big Data for Regional Science provides a seminal contribution to the field of regional science and will appeal to a broad audience, including those at all levels of academia, industry, and government.
Spatial Analysis Using Big Data
Title | Spatial Analysis Using Big Data PDF eBook |
Author | Yoshiki Yamagata |
Publisher | Academic Press |
Pages | 0 |
Release | 2019-11-02 |
Genre | Business & Economics |
ISBN | 9780128131275 |
Spatial Analysis Using Big Data: Methods and Urban Applications helps readers understand the most powerful, state-of-the-art spatial econometric methods, focusing particularly on urban research problems. The methods represent a cluster of potentially transformational socio-economic modeling tools that allow researchers to capture real-time and high-resolution information to potentially reveal new socioeconomic dynamics within urban populations. Each method, written by leading exponents of the discipline, uses real-time urban big data to solve research problems in spatial science. Urban applications of these methods are provided in unsurpassed depth, with chapters on surface temperature mapping, view value analysis, community clustering and spatial-social networks, among many others.
Big Data Applications in Geography and Planning
Title | Big Data Applications in Geography and Planning PDF eBook |
Author | Graham Clarke |
Publisher | Edward Elgar Publishing |
Pages | 480 |
Release | 2021-05-28 |
Genre | |
ISBN | 9781789909784 |
This unique book demonstrates the utility of big data approaches in human geography and planning. Offering a carefully curated selection of case studies, it reveals how researchers are accessing big data, what this data looks like and how such data can offer new and important insights and knowledge. Contributions from key scholars working in the field bring together an international series of case studies on demography and migration, retail and consumer analytics, health care planning, urban planning and transport studies. Chapters also discuss how data sets leveraged from commercial and public agency sources can greatly improve the data traditionally worked with in academic geography, regional science and planning. While addressing the challenges and limitations of big data, the book also demonstrates the usefulness of data sets held by commercial agencies and explores data linkage between big data and traditional public domain data sources. Focusing on the applications of big data to investigate issues in a spatial context, this book will be an essential guide for scholars and students of planning, mobility and human geography, particularly those who specialise in economic and transport geography. Its use of key case studies to demonstrate the applications of big data analytics in planning will also be useful for planners in these fields.
Development Studies in Regional Science
Title | Development Studies in Regional Science PDF eBook |
Author | Zhenhua Chen |
Publisher | Springer Nature |
Pages | 568 |
Release | 2020-02-21 |
Genre | Business & Economics |
ISBN | 9811514356 |
This book examines major policy and planning issues in development studies from the regional science perspective. It investigates questions such as: “How are communities able to deal with uncertainties raised by conflicts, technology, and external shocks in the process of development?”; “How can nations achieve sustainable development in terms of resource allocation and management?”; and “How can developing countries improve their economic competitiveness while maintaining the objectives of equitable and coordinated growth among different regions?” using case studies that focus on different subfields, like infrastructure, environment, data science, sustainability and resilience. The book is organized in three parts. Part I clarifies fundamental issues regarding development studies and regional science in general, while Part II includes several case studies that address development-related opportunities and challenges with a focus on Asian countries. Lastly, Part III offers a global perspective and explores development experiences from countries throughout the world. Featuring contributions by leading academics and practitioners working at various organizations linked to international development, and including multidisciplinary analyses, the book appeals to students who are interested in development studies and regional science. It also offers planners and policymakers fresh insights into regional economic development.
Encyclopedia of Big Data
Title | Encyclopedia of Big Data PDF eBook |
Author | Laurie A. Schintler |
Publisher | Springer |
Pages | 0 |
Release | 2022-02-23 |
Genre | Business & Economics |
ISBN | 9783319320090 |
This encyclopedia will be an essential resource for our times, reflecting the fact that we currently are living in an expanding data-driven world. Technological advancements and other related trends are contributing to the production of an astoundingly large and exponentially increasing collection of data and information, referred to in popular vernacular as “Big Data.” Social media and crowdsourcing platforms and various applications ― “apps” ― are producing reams of information from the instantaneous transactions and input of millions and millions of people around the globe. The Internet-of-Things (IoT), which is expected to comprise tens of billions of objects by the end of this decade, is actively sensing real-time intelligence on nearly every aspect of our lives and environment. The Global Positioning System (GPS) and other location-aware technologies are producing data that is specific down to particular latitude and longitude coordinates and seconds of the day. Large-scale instruments, such as the Large Hadron Collider (LHC), are collecting massive amounts of data on our planet and even distant corners of the visible universe. Digitization is being used to convert large collections of documents from print to digital format, giving rise to large archives of unstructured data. Innovations in technology, in the areas of Cloud and molecular computing, Artificial Intelligence/Machine Learning, and Natural Language Processing (NLP), to name only a few, also are greatly expanding our capacity to store, manage, and process Big Data. In this context, the Encyclopedia of Big Data is being offered in recognition of a world that is rapidly moving from gigabytes to terabytes to petabytes and beyond. While indeed large data sets have long been around and in use in a variety of fields, the era of Big Data in which we now live departs from the past in a number of key respects and with this departure comes a fresh set of challenges and opportunities that cut across and affect multiple sectors and disciplines, and the public at large. With expanded analytical capacities at hand, Big Data is now being used for scientific inquiry and experimentation in nearly every (if not all) disciplines, from the social sciences to the humanities to the natural sciences, and more. Moreover, the use of Big Data has been well established beyond the Ivory Tower. In today’s economy, businesses simply cannot be competitive without engaging Big Data in one way or another in support of operations, management, planning, or simply basic hiring decisions. In all levels of government, Big Data is being used to engage citizens and to guide policy making in pursuit of the interests of the public and society in general. Moreover, the changing nature of Big Data also raises new issues and concerns related to, for example, privacy, liability, security, access, and even the veracity of the data itself. Given the complex issues attending Big Data, there is a real need for a reference book that covers the subject from a multi-disciplinary, cross-sectoral, comprehensive, and international perspective. The Encyclopedia of Big Data will address this need and will be the first of such reference books to do so. Featuring some 500 entries, from "Access" to "Zillow," the Encyclopedia will serve as a fundamental resource for researchers and students, for decision makers and leaders, and for business analysts and purveyors. Developed for those in academia, industry, and government, and others with a general interest in Big Data, the encyclopedia will be aimed especially at those involved in its collection, analysis, and use. Ultimately, the Encyclopedia of Big Data will provide a common platform and language covering the breadth and depth of the topic for different segments, sectors, and disciplines.
Mobility Patterns, Big Data and Transport Analytics
Title | Mobility Patterns, Big Data and Transport Analytics PDF eBook |
Author | Constantinos Antoniou |
Publisher | Elsevier |
Pages | 0 |
Release | 2018-11-27 |
Genre | Social Science |
ISBN | 9780128129708 |
Mobility Patterns, Big Data and Transport Analytics provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing and controlling mobility patterns - a key aspect of transportation modeling. The book features prominent international experts who provide overviews on new analytical frameworks, applications and concepts in mobility analysis and transportation systems. Users will find a detailed, mobility 'structural' analysis and a look at the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications and transportation systems analysis that are related to complex processes and phenomena. This book bridges the gap between big data, data science, and transportation systems analysis with a study of big data's impact on mobility and an introduction to the tools necessary to apply new techniques. The book covers in detail, mobility 'structural' analysis (and its dynamics), the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications, and transportation systems analysis related to complex processes and phenomena. The book bridges the gap between big data, data science, and Transportation Systems Analysis with a study of big data's impact on mobility, and an introduction to the tools necessary to apply new techniques.