Big Data Baseball
Title | Big Data Baseball PDF eBook |
Author | Travis Sawchik |
Publisher | Flatiron Books |
Pages | 0 |
Release | 2016-05-03 |
Genre | Sports & Recreation |
ISBN | 9781250094254 |
Big Data Baseball provides a behind-the-scenes look at how the Pittsburgh Pirates used big data strategies to end the longest losing streak in North American pro sports history. New York Times Bestseller After twenty consecutive losing seasons for the Pittsburgh Pirates, team morale was low, the club’s payroll ranked near the bottom of the sport, game attendance was down, and the city was becoming increasingly disenchanted with its team. Big Data Baseball is the story of how the 2013 Pirates, mired in the longest losing streak in North American pro sports history, adopted drastic big-data strategies to end the drought, make the playoffs, and turn around the franchise’s fortunes. Big Data Baseball is Moneyball for a new generation. Award-winning journalist Travis Sawchik takes you behind the scenes to expertly weave together the stories of the key figures who changed the way the Pirates played the game, revealing how a culture of collaboration and creativity flourished as whiz-kid analysts worked alongside graybeard coaches to revolutionize the sport and uncover groundbreaking insights for how to win more games without spending a dime. From pitch framing to on-field shifts, this entertaining and enlightening underdog story closely examines baseball’s burgeoning big data movement and demonstrates how the millions of data points which aren’t immediately visible to players and spectators, are the bit of magic that led the Pirates to finish the 2013 season in second place and brought an end to a twenty-year losing streak.
Big Data Baseball
Title | Big Data Baseball PDF eBook |
Author | Travis Sawchik |
Publisher | Macmillan + ORM |
Pages | 235 |
Release | 2015-05-19 |
Genre | Sports & Recreation |
ISBN | 1250063515 |
Big Data Baseball provides a behind-the-scenes look at how the Pittsburgh Pirates used big data strategies to end the longest losing streak in North American pro sports history. New York Times Bestseller After twenty consecutive losing seasons for the Pittsburgh Pirates, team morale was low, the club’s payroll ranked near the bottom of the sport, game attendance was down, and the city was becoming increasingly disenchanted with its team. Big Data Baseball is the story of how the 2013 Pirates, mired in the longest losing streak in North American pro sports history, adopted drastic big-data strategies to end the drought, make the playoffs, and turn around the franchise’s fortunes. Big Data Baseball is Moneyball for a new generation. Award-winning journalist Travis Sawchik takes you behind the scenes to expertly weave together the stories of the key figures who changed the way the Pirates played the game, revealing how a culture of collaboration and creativity flourished as whiz-kid analysts worked alongside graybeard coaches to revolutionize the sport and uncover groundbreaking insights for how to win more games without spending a dime. From pitch framing to on-field shifts, this entertaining and enlightening underdog story closely examines baseball’s burgeoning big data movement and demonstrates how the millions of data points which aren’t immediately visible to players and spectators, are the bit of magic that led the Pirates to finish the 2013 season in second place and brought an end to a twenty-year losing streak.
The MVP Machine
Title | The MVP Machine PDF eBook |
Author | Ben Lindbergh |
Publisher | Basic Books |
Pages | 428 |
Release | 2019-06-04 |
Genre | Sports & Recreation |
ISBN | 1541698959 |
Move over, Moneyball -- this New York Times bestseller examines major league baseball's next cutting-edge revolution: the high-tech quest to build better players. As bestselling authors Ben Lindbergh and Travis Sawchik reveal in The MVP Machine, the Moneyball era is over. Fifteen years after Michael Lewis brought the Oakland Athletics' groundbreaking team-building strategies to light, every front office takes a data-driven approach to evaluating players, and the league's smarter teams no longer have a huge advantage in valuing past performance. Lindbergh and Sawchik's behind-the-scenes reporting reveals: How undersized afterthoughts José Altuve and Mookie Betts became big sluggers and MVPs How polarizing pitcher Trevor Bauer made himself a Cy Young contender How new analytical tools have overturned traditional pitching and hitting techniques How a wave of young talent is making MLB both better than ever and arguably worse to watch Instead of out-drafting, out-signing, and out-trading their rivals, baseball's best minds have turned to out-developing opponents, gaining greater edges than ever by perfecting prospects and eking extra runs out of older athletes who were once written off. Lindbergh and Sawchik take us inside the transformation of former fringe hitters into home-run kings, show how washed-up pitchers have emerged as aces, and document how coaching and scouting are being turned upside down. The MVP Machine charts the future of a sport and offers a lesson that goes beyond baseball: Success stems not from focusing on finished products, but from making the most of untapped potential.
When Big Data Was Small
Title | When Big Data Was Small PDF eBook |
Author | Richard D. Cramer |
Publisher | U of Nebraska Press |
Pages | 317 |
Release | 2019-05-01 |
Genre | Sports & Recreation |
ISBN | 1496215761 |
Richard D. Cramer has been doing baseball analytics for just about as long as anyone alive, even before the term "sabermetrics" existed. He started analyzing baseball statistics as a hobby in the mid-1960s, not long after graduating from Harvard and MIT. He was a research scientist for SmithKline and in his spare time used his work computer to test his theories about baseball statistics. One of his earliest discoveries was that clutch hitting--then one of the most sacred pieces of received wisdom in the game--didn't really exist. In When Big Data Was Small Cramer recounts his life and remarkable contributions to baseball knowledge. In 1971 Cramer learned about the Society for American Baseball Research (SABR) and began working with Pete Palmer, whose statistical work is credited with providing the foundation on which SABR is built. Cramer cofounded STATS Inc. and began working with the Houston Astros, Oakland A's, Yankees, and White Sox, with the help of his new Apple II computer. Yet for Cramer baseball was always a side interest, even if a very intense one for most of the last forty years. His main occupation, which involved other "big data" activities, was that of a chemist who pioneered the use of specialized analytics, often known as computer-aided drug discovery, to help guide the development of pharmaceutical drugs. After a decade-long hiatus, Cramer returned to baseball analytics in 2004 and has done important work with Retrosheet since then. When Big Data Was Small is the story of the earliest days of baseball analytics and computer-aided drug discovery.
Analyzing Baseball Data with R, Second Edition
Title | Analyzing Baseball Data with R, Second Edition PDF eBook |
Author | Max Marchi |
Publisher | CRC Press |
Pages | 302 |
Release | 2018-11-19 |
Genre | Mathematics |
ISBN | 1351107070 |
Analyzing Baseball Data with R Second Edition introduces R to sabermetricians, baseball enthusiasts, and students interested in exploring the richness of baseball data. It equips you with the necessary skills and software tools to perform all the analysis steps, from importing the data to transforming them into an appropriate format to visualizing the data via graphs to performing a statistical analysis. The authors first present an overview of publicly available baseball datasets and a gentle introduction to the type of data structures and exploratory and data management capabilities of R. They also cover the ggplot2 graphics functions and employ a tidyverse-friendly workflow throughout. Much of the book illustrates the use of R through popular sabermetrics topics, including the Pythagorean formula, runs expectancy, catcher framing, career trajectories, simulation of games and seasons, patterns of streaky behavior of players, and launch angles and exit velocities. All the datasets and R code used in the text are available online. New to the second edition are a systematic adoption of the tidyverse and incorporation of Statcast player tracking data (made available by Baseball Savant). All code from the first edition has been revised according to the principles of the tidyverse. Tidyverse packages, including dplyr, ggplot2, tidyr, purrr, and broom are emphasized throughout the book. Two entirely new chapters are made possible by the availability of Statcast data: one explores the notion of catcher framing ability, and the other uses launch angle and exit velocity to estimate the probability of a home run. Through the book’s various examples, you will learn about modern sabermetrics and how to conduct your own baseball analyses. Max Marchi is a Baseball Analytics Analyst for the Cleveland Indians. He was a regular contributor to The Hardball Times and Baseball Prospectus websites and previously consulted for other MLB clubs. Jim Albert is a Distinguished University Professor of statistics at Bowling Green State University. He has authored or coauthored several books including Curve Ball and Visualizing Baseball and was the editor of the Journal of Quantitative Analysis of Sports. Ben Baumer is an assistant professor of statistical & data sciences at Smith College. Previously a statistical analyst for the New York Mets, he is a co-author of The Sabermetric Revolution and Modern Data Science with R.
Big Data Baseball
Title | Big Data Baseball PDF eBook |
Author | Travis Sawchik |
Publisher | Macmillan |
Pages | 255 |
Release | 2015-05-19 |
Genre | Sports & Recreation |
ISBN | 1250063507 |
"Pittsburgh Pirates manager Clint Hurdle was old school and stubborn. But after twenty straight losing seasons and his job on the line, he was ready to try anything. So when he met with GM Neal Huntington in October 2012, they decided to discard everything they knew about the game and instead take on drastic 'big data' strategies. Going well beyond the number-crunching of Moneyball, which used statistics found on the back of baseball cards to identify market inefficiencies, the data the Pirates employed was not easily observable. They collected millions of data points on pitches and balls in play, creating a tome of reports that revealed key insights for how to win more games without spending a dime"--
The Shift
Title | The Shift PDF eBook |
Author | Russell Carleton |
Publisher | Triumph Books |
Pages | 287 |
Release | 2018-03-08 |
Genre | Psychology |
ISBN | 1641250135 |
With its three-hour-long contests, 162-game seasons, and countless measurable variables, baseball is a sport which lends itself to self-reflection and obsessive analysis. It's a thinking game. It's also a shifting game. Nowhere is this more evident than in the statistical revolution which has swept through the pastime in recent years, bringing metrics like WAR, OPS, and BABIP into front offices and living rooms alike. So what's on the horizon for a game that is constantly evolving? Positioned at the crossroads of sabermetrics and cognitive science, The Shift alters the trajectory of both traditional and analytics-based baseball thought. With a background in clinical psychology as well as experience in major league front offices, Baseball Prospectus' Russell Carleton illuminates advanced statistics and challenges cultural assumptions, demonstrating along the way that data and logic need not be at odds with the human elements of baseball—in fact, they're inextricably intertwined. Covering topics ranging from infield shifts to paradigm shifts, Carleton writes with verve, honesty, and an engaging style, inviting all those who love the game to examine it deeply and maybe a little differently. Data becomes digestible; intangibles are rendered not only accessible, but quantifiable. Casual fans and statheads alike will not want to miss this compelling meditation on what makes baseball tick.