Big Data Analysis and Deep Learning Applications

Big Data Analysis and Deep Learning Applications
Title Big Data Analysis and Deep Learning Applications PDF eBook
Author Thi Thi Zin
Publisher Springer
Pages 388
Release 2018-06-06
Genre Technology & Engineering
ISBN 9811308691

Download Big Data Analysis and Deep Learning Applications Book in PDF, Epub and Kindle

This book presents a compilation of selected papers from the first International Conference on Big Data Analysis and Deep Learning Applications (ICBDL 2018), and focuses on novel techniques in the fields of big data analysis, machine learning, system monitoring, image processing, conventional neural networks, communication, industrial information, and their applications. Readers will find insights to help them realize more efficient algorithms and systems used in real-life applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and regulators of aviation authorities.

Advanced Deep Learning Applications in Big Data Analytics

Advanced Deep Learning Applications in Big Data Analytics
Title Advanced Deep Learning Applications in Big Data Analytics PDF eBook
Author Bouarara, Hadj Ahmed
Publisher IGI Global
Pages 351
Release 2020-10-16
Genre Computers
ISBN 1799827933

Download Advanced Deep Learning Applications in Big Data Analytics Book in PDF, Epub and Kindle

Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges
Title Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges PDF eBook
Author Aboul Ella Hassanien
Publisher Springer Nature
Pages 648
Release 2020-12-14
Genre Computers
ISBN 303059338X

Download Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges Book in PDF, Epub and Kindle

This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.

Deep Learning in Data Analytics

Deep Learning in Data Analytics
Title Deep Learning in Data Analytics PDF eBook
Author Debi Prasanna Acharjya
Publisher Springer Nature
Pages 271
Release 2021-08-11
Genre Technology & Engineering
ISBN 3030758559

Download Deep Learning in Data Analytics Book in PDF, Epub and Kindle

This book comprises theoretical foundations to deep learning, machine learning and computing system, deep learning algorithms, and various deep learning applications. The book discusses significant issues relating to deep learning in data analytics. Further in-depth reading can be done from the detailed bibliography presented at the end of each chapter. Besides, this book's material includes concepts, algorithms, figures, graphs, and tables in guiding researchers through deep learning in data science and its applications for society. Deep learning approaches prevent loss of information and hence enhance the performance of data analysis and learning techniques. It brings up many research issues in the industry and research community to capture and access data effectively. The book provides the conceptual basis of deep learning required to achieve in-depth knowledge in computer and data science. It has been done to make the book more flexible and to stimulate further interest in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications.

Machine Learning for Big Data Analysis

Machine Learning for Big Data Analysis
Title Machine Learning for Big Data Analysis PDF eBook
Author Siddhartha Bhattacharyya
Publisher Walter de Gruyter GmbH & Co KG
Pages 194
Release 2018-12-17
Genre Computers
ISBN 3110551438

Download Machine Learning for Big Data Analysis Book in PDF, Epub and Kindle

This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Deep Learning Techniques and Optimization Strategies in Big Data Analytics
Title Deep Learning Techniques and Optimization Strategies in Big Data Analytics PDF eBook
Author Thomas, J. Joshua
Publisher IGI Global
Pages 355
Release 2019-11-29
Genre Computers
ISBN 1799811948

Download Deep Learning Techniques and Optimization Strategies in Big Data Analytics Book in PDF, Epub and Kindle

Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Applications of Machine Learning in Big-Data Analytics and Cloud Computing

Applications of Machine Learning in Big-Data Analytics and Cloud Computing
Title Applications of Machine Learning in Big-Data Analytics and Cloud Computing PDF eBook
Author Subhendu Kumar Pani
Publisher CRC Press
Pages 346
Release 2022-09-01
Genre Technology & Engineering
ISBN 1000793559

Download Applications of Machine Learning in Big-Data Analytics and Cloud Computing Book in PDF, Epub and Kindle

Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.