Bifurcations and Periodic Orbits of Vector Fields

Bifurcations and Periodic Orbits of Vector Fields
Title Bifurcations and Periodic Orbits of Vector Fields PDF eBook
Author Dana Schlomiuk
Publisher Springer Science & Business Media
Pages 500
Release 1993-07-31
Genre Mathematics
ISBN 9780792323921

Download Bifurcations and Periodic Orbits of Vector Fields Book in PDF, Epub and Kindle

The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields". This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work.

Bifurcations and Periodic Orbits of Vector Fields

Bifurcations and Periodic Orbits of Vector Fields
Title Bifurcations and Periodic Orbits of Vector Fields PDF eBook
Author Dana Schlomiuk
Publisher Springer Science & Business Media
Pages 483
Release 2013-03-09
Genre Mathematics
ISBN 9401582386

Download Bifurcations and Periodic Orbits of Vector Fields Book in PDF, Epub and Kindle

The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields". This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work.

Elements of Differentiable Dynamics and Bifurcation Theory

Elements of Differentiable Dynamics and Bifurcation Theory
Title Elements of Differentiable Dynamics and Bifurcation Theory PDF eBook
Author David Ruelle
Publisher Elsevier
Pages 196
Release 2014-05-10
Genre Mathematics
ISBN 1483272184

Download Elements of Differentiable Dynamics and Bifurcation Theory Book in PDF, Epub and Kindle

Elements of Differentiable Dynamics and Bifurcation Theory provides an introduction to differentiable dynamics, with emphasis on bifurcation theory and hyperbolicity that is essential for the understanding of complicated time evolutions occurring in nature. This book discusses the differentiable dynamics, vector fields, fixed points and periodic orbits, and stable and unstable manifolds. The bifurcations of fixed points of a map and periodic orbits, case of semiflows, and saddle-node and Hopf bifurcation are also elaborated. This text likewise covers the persistence of normally hyperbolic manifolds, hyperbolic sets, homoclinic and heteroclinic intersections, and global bifurcations. This publication is suitable for mathematicians and mathematically inclined students of the natural sciences.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory
Title Elements of Applied Bifurcation Theory PDF eBook
Author Yuri Kuznetsov
Publisher Springer Science & Business Media
Pages 648
Release 2013-03-09
Genre Mathematics
ISBN 1475739788

Download Elements of Applied Bifurcation Theory Book in PDF, Epub and Kindle

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Title Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields PDF eBook
Author John Guckenheimer
Publisher Springer Science & Business Media
Pages 475
Release 2013-11-21
Genre Mathematics
ISBN 1461211409

Download Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Book in PDF, Epub and Kindle

An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Continuation and Bifurcations: Numerical Techniques and Applications

Continuation and Bifurcations: Numerical Techniques and Applications
Title Continuation and Bifurcations: Numerical Techniques and Applications PDF eBook
Author Dirk Roose
Publisher Springer Science & Business Media
Pages 415
Release 2012-12-06
Genre Mathematics
ISBN 9400906595

Download Continuation and Bifurcations: Numerical Techniques and Applications Book in PDF, Epub and Kindle

Proceedings of the NATO Advanced Research Workshop, Leuven, Belgium, September 18-22, 1989

Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem

Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem
Title Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem PDF eBook
Author Robert Roussarie
Publisher Springer Science & Business Media
Pages 215
Release 2013-11-26
Genre Mathematics
ISBN 303480718X

Download Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem Book in PDF, Epub and Kindle

In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - The book as a whole is a well-balanced exposition that can be recommended to all those who want to gain a thorough understanding and proficiency in the recently developed methods. The book, reflecting the current state of the art, can also be used for teaching special courses. (Mathematical Reviews)