Bifurcation and Chaos: Analysis, Algorithms, Applications

Bifurcation and Chaos: Analysis, Algorithms, Applications
Title Bifurcation and Chaos: Analysis, Algorithms, Applications PDF eBook
Author KÜPPER
Publisher Birkhäuser
Pages 363
Release 2012-12-06
Genre Mathematics
ISBN 3034870043

Download Bifurcation and Chaos: Analysis, Algorithms, Applications Book in PDF, Epub and Kindle

This volume contains the proceedings of a conference held in Wiirzburg, August 20-24, 1990. The theme of the conference was Bifurcation and Chaos: Analysis, Algorithms, Ap plications. More than 100 scientists from 21 countries presented 80 contributions. Many of the results of the conference are described in the 49 refereed papers that follow. The conference was sponsored by the Deutsche Forschungsgemeinschaft, and by the Deutscher Akademischer Austauschdienst. We gratefully acknowledge the support from these agen cies. The science of nonlinear phenomena is evolving rapidly. Over the last 10 years, the emphasis has been gradually shifting. How trends vary may be seen by comparing these proceedings with previous ones, in particular with the conference held in Dortmund 1986 (proceedings published in ISNM 79). Concerning the range of phenomena, chaos has joined the bifurcation scenarios. As expected, the acceptance of chaos is less emotional among professionals, than it has been in some popular publications. A nalytical methods appear to have reached a state in which basic results of singularities, symmetry groups, or normal forms are everyday experience rather than exciting news. Similarly, numerical algorithms for frequent situations are now well established. Implemented in several packages, such algorithms have become standard means for attacking nonlinear problems. The sophisti cation that analytical and numerical methods have reached supports the vigorous trend to more and more applications. Pioneering equations as those named after Duffing, Van der Pol, or Lorenz, are no longer exclusively the state of art.

Bifurcation and Chaos: Analysis, Algorithms, Applications

Bifurcation and Chaos: Analysis, Algorithms, Applications
Title Bifurcation and Chaos: Analysis, Algorithms, Applications PDF eBook
Author KÜPPER
Publisher Birkhäuser
Pages 388
Release 1991-04-01
Genre Mathematics
ISBN 9783764325930

Download Bifurcation and Chaos: Analysis, Algorithms, Applications Book in PDF, Epub and Kindle

This volume contains the proceedings of a conference held in Wiirzburg, August 20-24, 1990. The theme of the conference was Bifurcation and Chaos: Analysis, Algorithms, Ap plications. More than 100 scientists from 21 countries presented 80 contributions. Many of the results of the conference are described in the 49 refereed papers that follow. The conference was sponsored by the Deutsche Forschungsgemeinschaft, and by the Deutscher Akademischer Austauschdienst. We gratefully acknowledge the support from these agen cies. The science of nonlinear phenomena is evolving rapidly. Over the last 10 years, the emphasis has been gradually shifting. How trends vary may be seen by comparing these proceedings with previous ones, in particular with the conference held in Dortmund 1986 (proceedings published in ISNM 79). Concerning the range of phenomena, chaos has joined the bifurcation scenarios. As expected, the acceptance of chaos is less emotional among professionals, than it has been in some popular publications. A nalytical methods appear to have reached a state in which basic results of singularities, symmetry groups, or normal forms are everyday experience rather than exciting news. Similarly, numerical algorithms for frequent situations are now well established. Implemented in several packages, such algorithms have become standard means for attacking nonlinear problems. The sophisti cation that analytical and numerical methods have reached supports the vigorous trend to more and more applications. Pioneering equations as those named after Duffing, Van der Pol, or Lorenz, are no longer exclusively the state of art.

Normal Modes and Localization in Nonlinear Systems

Normal Modes and Localization in Nonlinear Systems
Title Normal Modes and Localization in Nonlinear Systems PDF eBook
Author Alexander F. Vakakis
Publisher Springer Science & Business Media
Pages 290
Release 2013-06-29
Genre Science
ISBN 9401724520

Download Normal Modes and Localization in Nonlinear Systems Book in PDF, Epub and Kindle

The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.

Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems

Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems
Title Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems PDF eBook
Author Eusebius Doedel
Publisher Springer Science & Business Media
Pages 482
Release 2012-12-06
Genre Mathematics
ISBN 1461212081

Download Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems Book in PDF, Epub and Kindle

The Institute for Mathematics and its Applications (IMA) devoted its 1997-1998 program to Emerging Applications of Dynamical Systems. Dynamical systems theory and related numerical algorithms provide powerful tools for studying the solution behavior of differential equations and mappings. In the past 25 years computational methods have been developed for calculating fixed points, limit cycles, and bifurcation points. A remaining challenge is to develop robust methods for calculating more complicated objects, such as higher- codimension bifurcations of fixed points, periodic orbits, and connecting orbits, as well as the calcuation of invariant manifolds. Another challenge is to extend the applicability of algorithms to the very large systems that result from discretizing partial differential equations. Even the calculation of steady states and their linear stability can be prohibitively expensive for large systems (e.g. 10_3- -10_6 equations) if attempted by simple direct methods. Several of the papers in this volume treat computational methods for low and high dimensional systems and, in some cases, their incorporation into software packages. A few papers treat fundamental theoretical problems, including smooth factorization of matrices, self -organized criticality, and unfolding of singular heteroclinic cycles. Other papers treat applications of dynamical systems computations in various scientific fields, such as biology, chemical engineering, fluid mechanics, and mechanical engineering.

Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters

Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters
Title Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters PDF eBook
Author H.G. Kaper
Publisher Springer Science & Business Media
Pages 371
Release 2012-12-06
Genre Mathematics
ISBN 9401118108

Download Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters Book in PDF, Epub and Kindle

This volume contains the proceedings of the NATO Advanced Research Workshop on "Asymptotic-induced Numerical Methods for Partial Differ ential Equations, Critical Parameters, and Domain Decomposition," held at Beaune (France), May 25-28, 1992. The purpose of the workshop was to stimulate the integration of asymp totic analysis, domain decomposition methods, and symbolic manipulation tools for the numerical solution of partial differential equations (PDEs) with critical parameters. A workshop on the same topic was held at Argonne Na tional Laboratory in February 1990. (The proceedings were published under the title Asymptotic Analysis and the Numerical Solu.tion of Partial Differ ential Equations, Hans G. Kaper and Marc Garbey, eds., Lecture Notes in Pure and Applied Mathematics. Vol. 130, ·Marcel Dekker, Inc., New York, 1991.) In a sense, the present proceedings represent a progress report on the topic area. Comparing the two sets of proceedings, we see an increase in the quantity as well as the quality of the contributions. 110re research is being done in the topic area, and the interest covers serious, nontrivial problems. We are pleased with this outcome and expect to see even more advances in the next few years as the field progresses.

Numerical Methods for Nonlinear Elliptic Differential Equations

Numerical Methods for Nonlinear Elliptic Differential Equations
Title Numerical Methods for Nonlinear Elliptic Differential Equations PDF eBook
Author Klaus Böhmer
Publisher Oxford University Press
Pages 775
Release 2010-10-07
Genre Computers
ISBN 0199577048

Download Numerical Methods for Nonlinear Elliptic Differential Equations Book in PDF, Epub and Kindle

Boehmer systmatically handles the different numerical methods for nonlinear elliptic problems.

Bifurcation Control

Bifurcation Control
Title Bifurcation Control PDF eBook
Author Guanrong Chen
Publisher Springer Science & Business Media
Pages 344
Release 2003-08-26
Genre Technology & Engineering
ISBN 9783540403418

Download Bifurcation Control Book in PDF, Epub and Kindle

Bifurcation control refers to the task of designing a controller that can modify the bifurcation properties of a given nonlinear system, so as to achieve some desirable dynamical behaviors. There exists no similar control theory-oriented book available in the market that is devoted to the subject of bifurcation control, written by control engineers for control engineers. World-renowned leading experts in the field provide their state-of-the-art survey about the extensive research that has been done over the last few years in this subject. The book is not only aimed at active researchers in the field of bifurcation control and its applications, but also at a general audience in related fields.