BCS to BEC Evolution and Quantum Phase Transitions in Superfluid Fermi Gases

BCS to BEC Evolution and Quantum Phase Transitions in Superfluid Fermi Gases
Title BCS to BEC Evolution and Quantum Phase Transitions in Superfluid Fermi Gases PDF eBook
Author Menderes Iskin
Publisher
Pages
Release 2007
Genre Bose-Einstein condensation
ISBN

Download BCS to BEC Evolution and Quantum Phase Transitions in Superfluid Fermi Gases Book in PDF, Epub and Kindle

This thesis focuses on the analysis of Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) evolution in ultracold superfluid Fermi gases when the interaction between atoms is varied. The tuning of attractive interactions permits the ground state of the system to evolve from a weak fermion attraction BCS limit of loosely bound and largely overlapping Cooper pairs to a strong fermion attraction limit of tightly bound small bosonic molecules which undergo BEC. This evolution is accompanied by anomalous behavior of many superfluid properties, and reveals several quantum phase transitions. This thesis has two parts: In the first part, I analyze zero and nonzero orbital angular momentum pairing effects, and show that a quantum phase transition occurs for nonzero angular momentum pairing, unlike the s-wave case where the BCS to BEC evolution is just a crossover. In the second part, I analyze two-species fermion mixtures with mass and population imbalance in continuum, trap and lattice models. In contrast with the crossover physics found in the mass and population balanced mixtures, I demonstrate the existence of phase transitions between normal and superfluid phases, as well as phase separation between superfluid (paired) and normal (excess) fermions in imbalanced mixtures as a function of scattering parameter and mass and population imbalance.

The BCS-BEC Crossover and the Unitary Fermi Gas

The BCS-BEC Crossover and the Unitary Fermi Gas
Title The BCS-BEC Crossover and the Unitary Fermi Gas PDF eBook
Author Wilhelm Zwerger
Publisher Springer Science & Business Media
Pages 543
Release 2011-10-22
Genre Science
ISBN 3642219772

Download The BCS-BEC Crossover and the Unitary Fermi Gas Book in PDF, Epub and Kindle

Recent experimental and theoretical progress has elucidated the tunable crossover, in ultracold Fermi gases, from BCS-type superconductors to BEC-type superfluids. The BCS-BEC Crossover and the Unitary Fermi Gas is a collaborative effort by leading international experts to provide an up-to-date introduction and a comprehensive overview of current research in this fast-moving field. It is now understood that the unitary regime that lies right in the middle of the crossover has remarkable universal properties, arising from scale invariance, and has connections with fields as diverse as nuclear physics and string theory. This volume will serve as a first point of reference for active researchers in the field, and will benefit the many non-specialists and graduate students who require a self-contained, approachable exposition of the subject matter.

BCS-to-BEC Quantum Phase Transition in High-Tc Superconductors and Fermionic Atomic Gases

BCS-to-BEC Quantum Phase Transition in High-Tc Superconductors and Fermionic Atomic Gases
Title BCS-to-BEC Quantum Phase Transition in High-Tc Superconductors and Fermionic Atomic Gases PDF eBook
Author Sergio S. Botelho
Publisher
Pages
Release 2005
Genre Bosons
ISBN

Download BCS-to-BEC Quantum Phase Transition in High-Tc Superconductors and Fermionic Atomic Gases Book in PDF, Epub and Kindle

The problem of the evolution from BCS theory with cooperative Cooper pairing to the formation and condensation of composite bosons has attracted considerable attention for the past several decades. It has gained renewed impetus in the mid-eighties with the discovery of the high-Tc superconductors, which have a coherence length comparable to the interparticle spacing. More recently, this subject has spurred a great deal of research activity in connection with experiments involving dilute atomic gases of fermionic atoms. The initial objective of this work will be to use functional integral techniques to analyze the low-temperature BCS-to-BEC evolution of d-wave superconductors within the saddle point (mean field) approximation for a continuum model. Then, the same mathematical formalism will be applied to the problem of the BCS-to-BEC evolution of fully spin-polarized p-wave Fermi gases in two dimensions. We find that a quantum phase transition occurs for both systems as they are driven from the BCS-like regime of weakly interacting fermionic pairs to the opposite BEC-like regime of strongly interacting bosonic molecules. This is in contrast to the smooth crossover predicted and observed in systems that exhibit s-wave pairing symmetry. We calculate several spectroscopic and thermodynamic properties that signal the occurrence of this phase transition, and suggest some possible experimental realizations. Finally, fluctuations about the saddle point solution are included in the calculations, and the effects of such correction are analyzed in the low ...

BCS-BEC Crossover in an Ultracold Fermi Gas

BCS-BEC Crossover in an Ultracold Fermi Gas
Title BCS-BEC Crossover in an Ultracold Fermi Gas PDF eBook
Author Wei Yi
Publisher
Pages 314
Release 2006
Genre
ISBN

Download BCS-BEC Crossover in an Ultracold Fermi Gas Book in PDF, Epub and Kindle

Quantum Fluctuations in the BCS-BEC Crossover of Two-dimensional Fermi Gases

Quantum Fluctuations in the BCS-BEC Crossover of Two-dimensional Fermi Gases
Title Quantum Fluctuations in the BCS-BEC Crossover of Two-dimensional Fermi Gases PDF eBook
Author
Publisher
Pages
Release 2015
Genre
ISBN

Download Quantum Fluctuations in the BCS-BEC Crossover of Two-dimensional Fermi Gases Book in PDF, Epub and Kindle

Fermion Pairing and BEC-BCS Crossover in Novel Systems

Fermion Pairing and BEC-BCS Crossover in Novel Systems
Title Fermion Pairing and BEC-BCS Crossover in Novel Systems PDF eBook
Author Renyuan Liao
Publisher
Pages 215
Release 2008
Genre Bose-Einstein condensation
ISBN

Download Fermion Pairing and BEC-BCS Crossover in Novel Systems Book in PDF, Epub and Kindle

This dissertation covers my theoretical work in the field of pairing of fermions and BCS-BEC crossover behavior in various condensed matter systems. High temperature superconductors, heavy fermion systems, 2D semiconductors undergoing a semiconductor-superconductor transition, and ultracold atomic Fermi gases are examples of novel systems that provide us with a rich playground to study pairing phenomena such as superconductivity or superfluidity. In this dissertation, with ultracold fermions in mind, I attempt to address some of the outstanding theoretical issues regarding pairing of fermions for arbitrary interactions, and for arbitrary population and mass imbalance. In so doing, I explore pairing in Bose-Einstein condensation EC) and Bardeen-Cooper-Schrieffer CS) regimes, and the behavior at the BEC-BCS crossover. I investigate the stability of paired many-fermion ground states, e.g., superfluidity and phase separated states; and possible phase transitions between these ground states. The specific projects that I undertake at the mean-field level are: interplay of intra- and inter- species pairing correlations in determining s-wave pairing in spin-population imbalanced Fermi systems; p-wave pairing in systems with mismatched fermi surfaces; stability of "breached pairs" states with p-wave symmetry in BEC and BCS regimes; use of Bogoliubov-de Gennes equations to study spatial variation of the pairing order parameter; and superconductivity with unconventional pairing symmetries in 2D systems with an "inherent" gaps, such as in semiconducting systems. In the case of s-wave pairing in a spin-population imbalanced system, while the system phase separates into normal and superfluid components, I show that the inclusion of intra-species correlation stabilizes a supefluid phase, up to a critical polarization, on the BCS side. For S=1, ms=0 triplet p-wave pairing in a population imbalanced system, I obtain a rich phase diagram. In addition to the states Δ"1 propto Y1"1, a multitude of "mixed" SF states formed of linear combinations of Y1m's give global energy minimum under a phase stability condition. States with local minimum are also obtained. With increased polarization, the global minimum SF states may undergo a quantum phase transition to the local minimum SF states. I also study effects of finite temperature (T) and of mass imbalance (r) between the species. Though the features of the phase diagram are not changed qualitatively from the equal mass (r=1) case, the critical temperature Tc shows some interesting behavior for large polarization. Our p-wave pairing provides an arena to study "breached pairing" P), i.e., phase separation in momentum space. While this is not stable in BCS regime for s-wave pairing, I find that p-wave BP phases may be stable in both BCS and BEC regimes for arbitrary mass ratio, r. To explore many-body effects beyond mean-field, I study the effects of quantum fluctuations on equilibrium and pairing properties in BEC and BCS regimes and near the crossover (unitarity limit). I apply this to systems subjected to p-wave Feshbach resonance and compare with the results for the s-wave case. I also study the effects of these fluctuations on possible suppression of the superfluid transition temperature from dilute to dense regimes and at unitarity, and find the suppression factor of 2.2 to be quite robust, except close to unitarity. Specific systems to which my work may apply are population imbalanced cold atomic systems, 2D systems with "inherent gap", such as semiconducting systems, and strongly correlated Fermi systems close to the unitarity limit at the BEC-BCS crossover. My research utilizes method of many-body quantum field theory, quantum statistical mechanics, diagrammatic perturbation theory, notions of superconductivity and superfluidity at and beyond mean-field level. In many instances, I have developed detailed and reliable computer codes relevant to my work.

Ultra-cold Fermi Gases

Ultra-cold Fermi Gases
Title Ultra-cold Fermi Gases PDF eBook
Author M. Inguscio
Publisher IOS Press
Pages 933
Release 2008-04-18
Genre Science
ISBN 1607503182

Download Ultra-cold Fermi Gases Book in PDF, Epub and Kindle

The field of cold atomic gases faced a revolution in 1995 when Bose-Einstein condensation was achieved. Since then, there has been an impressive progress, both experimental and theoretical. The quest for ultra-cold Fermi gases started shortly after the 1995 discovery, and quantum degeneracy in a gas of fermionic atoms was obtained in 1999. The Pauli exclusion principle plays a crucial role in many aspects of ultra-cold Fermi gases, including inhibited interactions with applications to precision measurements, and strong correlations. The path towards strong interactions and pairing of fermions opened up with the discovery in 2003 that molecules formed by fermions near a Feshbach resonance were surprisingly stable against inelastic decay, but featured strong elastic interactions. This remarkable combination was explained by the Pauli exclusion principle and the fact that only inelastic collisions require three fermions to come close to each other. The unexpected stability of strongly interacting fermions and fermion pairs triggered most of the research which was presented at this summer school. It is remarkable foresight (or good luck) that the first steps to organize this summer school were already taken before this discovery. It speaks for the dynamics of the field how dramatically it can change course when new insight is obtained. The contributions in this volume provide a detailed coverage of the experimental techniques for the creation and study of Fermi quantum gases, as well as the theoretical foundation for understanding the properties of these novel systems.