Practical Nonparametric and Semiparametric Bayesian Statistics

Practical Nonparametric and Semiparametric Bayesian Statistics
Title Practical Nonparametric and Semiparametric Bayesian Statistics PDF eBook
Author Dipak D. Dey
Publisher Springer Science & Business Media
Pages 376
Release 2012-12-06
Genre Mathematics
ISBN 1461217326

Download Practical Nonparametric and Semiparametric Bayesian Statistics Book in PDF, Epub and Kindle

A compilation of original articles by Bayesian experts, this volume presents perspectives on recent developments on nonparametric and semiparametric methods in Bayesian statistics. The articles discuss how to conceptualize and develop Bayesian models using rich classes of nonparametric and semiparametric methods, how to use modern computational tools to summarize inferences, and how to apply these methodologies through the analysis of case studies.

Bayesian Nonparametrics

Bayesian Nonparametrics
Title Bayesian Nonparametrics PDF eBook
Author Nils Lid Hjort
Publisher Cambridge University Press
Pages 309
Release 2010-04-12
Genre Mathematics
ISBN 1139484605

Download Bayesian Nonparametrics Book in PDF, Epub and Kindle

Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

Bayesian Nonparametrics

Bayesian Nonparametrics
Title Bayesian Nonparametrics PDF eBook
Author J.K. Ghosh
Publisher Springer Science & Business Media
Pages 311
Release 2006-05-11
Genre Mathematics
ISBN 0387226540

Download Bayesian Nonparametrics Book in PDF, Epub and Kindle

This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.

Bayesian Thinking, Modeling and Computation

Bayesian Thinking, Modeling and Computation
Title Bayesian Thinking, Modeling and Computation PDF eBook
Author
Publisher Elsevier
Pages 1062
Release 2005-11-29
Genre Mathematics
ISBN 0080461174

Download Bayesian Thinking, Modeling and Computation Book in PDF, Epub and Kindle

This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics

Aspects of Uncertainty

Aspects of Uncertainty
Title Aspects of Uncertainty PDF eBook
Author Adrian F. M. Smith
Publisher
Pages 428
Release 1994-09-13
Genre Business & Economics
ISBN

Download Aspects of Uncertainty Book in PDF, Epub and Kindle

Throughout his career Dennis Lindley has insisted on thinking things through from first principles and on basing developments on firm, logical foundations. Although his fundamental contributions to Bayesian statistics and decision theory are universally recognised, it is less well known that he arrived at the Bayesian position as a result of seeking to establish a rigorous axiomatic justification for classical statistical procedures.

Bayesian Econometrics

Bayesian Econometrics
Title Bayesian Econometrics PDF eBook
Author Siddhartha Chib
Publisher Emerald Group Publishing
Pages 656
Release 2008-12-18
Genre Business & Economics
ISBN 1848553099

Download Bayesian Econometrics Book in PDF, Epub and Kindle

Illustrates the scope and diversity of modern applications, reviews advances, and highlights many desirable aspects of inference and computations. This work presents an historical overview that describes key contributions to development and makes predictions for future directions.

Bayesian Statistical Modelling

Bayesian Statistical Modelling
Title Bayesian Statistical Modelling PDF eBook
Author Peter Congdon
Publisher John Wiley & Sons
Pages 596
Release 2007-04-04
Genre Mathematics
ISBN 0470035935

Download Bayesian Statistical Modelling Book in PDF, Epub and Kindle

Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology