Bayesian Models for Astrophysical Data

Bayesian Models for Astrophysical Data
Title Bayesian Models for Astrophysical Data PDF eBook
Author Joseph M. Hilbe
Publisher Cambridge University Press
Pages 429
Release 2017-04-27
Genre Mathematics
ISBN 1108210740

Download Bayesian Models for Astrophysical Data Book in PDF, Epub and Kindle

This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

Bayesian Methods in Cosmology

Bayesian Methods in Cosmology
Title Bayesian Methods in Cosmology PDF eBook
Author Michael P. Hobson
Publisher Cambridge University Press
Pages 317
Release 2010
Genre Mathematics
ISBN 0521887941

Download Bayesian Methods in Cosmology Book in PDF, Epub and Kindle

Comprehensive introduction to Bayesian methods in cosmological studies, for graduate students and researchers in cosmology, astrophysics and applied statistics.

Bayesian Models for Astrophysical Data

Bayesian Models for Astrophysical Data
Title Bayesian Models for Astrophysical Data PDF eBook
Author Joseph M. Hilbe
Publisher Cambridge University Press
Pages 429
Release 2017-04-27
Genre Mathematics
ISBN 1107133084

Download Bayesian Models for Astrophysical Data Book in PDF, Epub and Kindle

A hands-on guide to Bayesian models with R, JAGS, Python, and Stan code, for a wide range of astronomical data types.

Modeling Count Data

Modeling Count Data
Title Modeling Count Data PDF eBook
Author Joseph M. Hilbe
Publisher Cambridge University Press
Pages 301
Release 2014-07-21
Genre Business & Economics
ISBN 1107028337

Download Modeling Count Data Book in PDF, Epub and Kindle

This book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.

Bayesian Astrophysics

Bayesian Astrophysics
Title Bayesian Astrophysics PDF eBook
Author Andrés Asensio Ramos
Publisher Cambridge University Press
Pages 209
Release 2018-04-26
Genre Mathematics
ISBN 1107102138

Download Bayesian Astrophysics Book in PDF, Epub and Kindle

Provides an overview of the fundamentals of Bayesian inference and its applications within astrophysics, for graduate students and researchers.

Modern Statistical Methods for Astronomy

Modern Statistical Methods for Astronomy
Title Modern Statistical Methods for Astronomy PDF eBook
Author Eric D. Feigelson
Publisher Cambridge University Press
Pages 495
Release 2012-07-12
Genre Science
ISBN 052176727X

Download Modern Statistical Methods for Astronomy Book in PDF, Epub and Kindle

Modern Statistical Methods for Astronomy: With R Applications.

Numerical Analysis Using R

Numerical Analysis Using R
Title Numerical Analysis Using R PDF eBook
Author Graham W. Griffiths
Publisher Cambridge University Press
Pages 637
Release 2016-04-26
Genre Mathematics
ISBN 131665415X

Download Numerical Analysis Using R Book in PDF, Epub and Kindle

This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.