Bayesian Approach to Inverse Problems

Bayesian Approach to Inverse Problems
Title Bayesian Approach to Inverse Problems PDF eBook
Author Jérôme Idier
Publisher John Wiley & Sons
Pages 322
Release 2013-03-01
Genre Mathematics
ISBN 111862369X

Download Bayesian Approach to Inverse Problems Book in PDF, Epub and Kindle

Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.

Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification
Title Handbook of Uncertainty Quantification PDF eBook
Author Roger Ghanem
Publisher Springer
Pages 0
Release 2016-05-08
Genre Mathematics
ISBN 9783319123844

Download Handbook of Uncertainty Quantification Book in PDF, Epub and Kindle

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Parameter Estimation and Inverse Problems

Parameter Estimation and Inverse Problems
Title Parameter Estimation and Inverse Problems PDF eBook
Author Richard C. Aster
Publisher Elsevier
Pages 406
Release 2018-10-16
Genre Science
ISBN 0128134232

Download Parameter Estimation and Inverse Problems Book in PDF, Epub and Kindle

Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner

Statistical and Computational Inverse Problems

Statistical and Computational Inverse Problems
Title Statistical and Computational Inverse Problems PDF eBook
Author Jari Kaipio
Publisher Springer Science & Business Media
Pages 346
Release 2006-03-30
Genre Mathematics
ISBN 0387271325

Download Statistical and Computational Inverse Problems Book in PDF, Epub and Kindle

This book covers the statistical mechanics approach to computational solution of inverse problems, an innovative area of current research with very promising numerical results. The techniques are applied to a number of real world applications such as limited angle tomography, image deblurring, electical impedance tomography, and biomagnetic inverse problems. Contains detailed examples throughout and includes a chapter on case studies where such methods have been implemented in biomedical engineering.

Large-Scale Inverse Problems and Quantification of Uncertainty

Large-Scale Inverse Problems and Quantification of Uncertainty
Title Large-Scale Inverse Problems and Quantification of Uncertainty PDF eBook
Author Lorenz Biegler
Publisher John Wiley & Sons
Pages 403
Release 2011-06-24
Genre Mathematics
ISBN 1119957583

Download Large-Scale Inverse Problems and Quantification of Uncertainty Book in PDF, Epub and Kindle

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems
Title Computational Methods for Inverse Problems PDF eBook
Author Curtis R. Vogel
Publisher SIAM
Pages 195
Release 2002-01-01
Genre Mathematics
ISBN 0898717574

Download Computational Methods for Inverse Problems Book in PDF, Epub and Kindle

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems
Title An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems PDF eBook
Author Luis Tenorio
Publisher SIAM
Pages 275
Release 2017-07-06
Genre Mathematics
ISBN 1611974917

Download An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems Book in PDF, Epub and Kindle

Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.