Bayesian Brain
Title | Bayesian Brain PDF eBook |
Author | Kenji Doya |
Publisher | MIT Press |
Pages | 341 |
Release | 2007 |
Genre | Bayesian statistical decision theory |
ISBN | 026204238X |
Experimental and theoretical neuroscientists use Bayesian approaches to analyze the brain mechanisms of perception, decision-making, and motor control.
Bayesian Brain
Title | Bayesian Brain PDF eBook |
Author | Kenji Doya |
Publisher | Mit Press |
Pages | 326 |
Release | 2011 |
Genre | Medical |
ISBN | 9780262516013 |
Experimental and theoretical neuroscientists use Bayesian approaches to analyze the brain mechanisms of perception, decision-making, and motor control. A Bayesian approach can contribute to an understanding of the brain on multiple levels, by giving normative predictions about how an ideal sensory system should combine prior knowledge and observation, by providing mechanistic interpretation of the dynamic functioning of the brain circuit, and by suggesting optimal ways of deciphering experimental data. Bayesian Brain brings together contributions from both experimental and theoretical neuroscientists that examine the brain mechanisms of perception, decision making, and motor control according to the concepts of Bayesian estimation.After an overview of the mathematical concepts, including Bayes' theorem, that are basic to understanding the approaches discussed, contributors discuss how Bayesian concepts can be used for interpretation of such neurobiological data as neural spikes and functional brain imaging. Next, contributors examine the modeling of sensory processing, including the neural coding of information about the outside world. Finally, contributors explore dynamic processes for proper behaviors, including the mathematics of the speed and accuracy of perceptual decisions and neural models of belief propagation.
Bayesian Rationality
Title | Bayesian Rationality PDF eBook |
Author | Mike Oaksford |
Publisher | Oxford University Press |
Pages | 342 |
Release | 2007-02-22 |
Genre | Philosophy |
ISBN | 0198524498 |
For almost 2,500 years, the Western concept of what is to be human has been dominated by the idea that the mind is the seat of reason - humans are, almost by definition, the rational animal. In this text a more radical suggestion for explaining these puzzling aspects of human reasoning is put forward.
Probabilistic Models of the Brain
Title | Probabilistic Models of the Brain PDF eBook |
Author | Rajesh P.N. Rao |
Publisher | MIT Press |
Pages | 348 |
Release | 2002-03-29 |
Genre | Medical |
ISBN | 9780262264327 |
A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.
Decisions, Uncertainty, and the Brain
Title | Decisions, Uncertainty, and the Brain PDF eBook |
Author | Paul W. Glimcher |
Publisher | MIT Press |
Pages | 404 |
Release | 2004-09-17 |
Genre | Medical |
ISBN | 9780262572279 |
In this provocative book, Paul Glimcher argues that economic theory may provide an alternative to the classical Cartesian model of the brain and behavior. Glimcher argues that Cartesian dualism operates from the false premise that the reflex is able to describe behavior in the real world that animals inhabit. A mathematically rich cognitive theory, he claims, could solve the most difficult problems that any environment could present, eliminating the need for dualism by eliminating the need for a reflex theory. Such a mathematically rigorous description of the neural processes that connect sensation and action, he explains, will have its roots in microeconomic theory. Economic theory allows physiologists to define both the optimal course of action that an animal might select and a mathematical route by which that optimal solution can be derived. Glimcher outlines what an economics-based cognitive model might look like and how one would begin to test it empirically. Along the way, he presents a fascinating history of neuroscience. He also discusses related questions about determinism, free will, and the stochastic nature of complex behavior.
Bayesian Statistics for Experimental Scientists
Title | Bayesian Statistics for Experimental Scientists PDF eBook |
Author | Richard A. Chechile |
Publisher | MIT Press |
Pages | 473 |
Release | 2020-09-08 |
Genre | Mathematics |
ISBN | 0262360705 |
An introduction to the Bayesian approach to statistical inference that demonstrates its superiority to orthodox frequentist statistical analysis. This book offers an introduction to the Bayesian approach to statistical inference, with a focus on nonparametric and distribution-free methods. It covers not only well-developed methods for doing Bayesian statistics but also novel tools that enable Bayesian statistical analyses for cases that previously did not have a full Bayesian solution. The book's premise is that there are fundamental problems with orthodox frequentist statistical analyses that distort the scientific process. Side-by-side comparisons of Bayesian and frequentist methods illustrate the mismatch between the needs of experimental scientists in making inferences from data and the properties of the standard tools of classical statistics.
Surfing Uncertainty
Title | Surfing Uncertainty PDF eBook |
Author | Andy Clark |
Publisher | Oxford University Press, USA |
Pages | 425 |
Release | 2016 |
Genre | Medical |
ISBN | 0190217014 |
Exciting new theories in neuroscience, psychology, and artificial intelligence are revealing minds like ours as predictive minds, forever trying to guess the incoming streams of sensory stimulation before they arrive. In this up-to-the-minute treatment, philosopher and cognitive scientist Andy Clark explores new ways of thinking about perception, action, and the embodied mind.