Basics of Applied Stochastic Processes
Title | Basics of Applied Stochastic Processes PDF eBook |
Author | Richard Serfozo |
Publisher | Springer Science & Business Media |
Pages | 452 |
Release | 2009-01-24 |
Genre | Mathematics |
ISBN | 3540893326 |
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Basics of Applied Stochastic Processes
Title | Basics of Applied Stochastic Processes PDF eBook |
Author | Richard Serfozo |
Publisher | Springer |
Pages | 0 |
Release | 2014-11-06 |
Genre | Mathematics |
ISBN | 9783642430435 |
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Applied Stochastic Processes
Title | Applied Stochastic Processes PDF eBook |
Author | Mario Lefebvre |
Publisher | Springer Science & Business Media |
Pages | 395 |
Release | 2007-12-14 |
Genre | Mathematics |
ISBN | 0387489762 |
This book uses a distinctly applied framework to present the most important topics in stochastic processes, including Gaussian and Markovian processes, Markov Chains, Poisson processes, Brownian motion and queueing theory. The book also examines in detail special diffusion processes, with implications for finance, various generalizations of Poisson processes, and renewal processes. It contains numerous examples and approximately 350 advanced problems that reinforce both concepts and applications. Entertaining mini-biographies of mathematicians give an enriching historical context. The book includes statistical tables and solutions to the even-numbered problems at the end.
A Course in Applied Stochastic Processes
Title | A Course in Applied Stochastic Processes PDF eBook |
Author | A. Goswami |
Publisher | Springer |
Pages | 226 |
Release | 2006-09-15 |
Genre | Mathematics |
ISBN | 9386279312 |
Applied Stochastic Analysis
Title | Applied Stochastic Analysis PDF eBook |
Author | Weinan E |
Publisher | American Mathematical Soc. |
Pages | 305 |
Release | 2021-09-22 |
Genre | Education |
ISBN | 1470465698 |
This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.
Elements of Applied Stochastic Processes
Title | Elements of Applied Stochastic Processes PDF eBook |
Author | U. Narayan Bhat |
Publisher | Wiley-Interscience |
Pages | 496 |
Release | 2002-09-06 |
Genre | Mathematics |
ISBN |
The third edition of this volume improves on the last edition by condensing the material and organizing it into a more teachable format. It provides more in-depth coverage of Markov chains and simple Markov process and gives added emphasis to statistical inference in stochastic processes.
Applied Stochastic Processes
Title | Applied Stochastic Processes PDF eBook |
Author | Ming Liao |
Publisher | CRC Press |
Pages | 209 |
Release | 2013-07-22 |
Genre | Business & Economics |
ISBN | 1466589337 |
Applied Stochastic Processes presents a concise, graduate-level treatment of the subject, emphasizing applications and practical computation. It also establishes the complete mathematical theory in an accessible way. After reviewing basic probability, the text covers Poisson processes, renewal processes, discrete- and continuous-time Markov chains, and Brownian motion. It also offers an introduction to stochastic differential equations. While the main applications described are queues, the book also considers other examples, such as the mathematical model of a single stock market. With exercises in most sections, this book provides a clear, practical introduction for beginning graduate students. The material is presented in a straightforward manner using short, motivating examples. In addition, the author develops the mathematical theory with a strong emphasis on probability intuition.