Basic Theory of Ordinary Differential Equations

Basic Theory of Ordinary Differential Equations
Title Basic Theory of Ordinary Differential Equations PDF eBook
Author Po-Fang Hsieh
Publisher Springer Science & Business Media
Pages 480
Release 2012-12-06
Genre Mathematics
ISBN 1461215064

Download Basic Theory of Ordinary Differential Equations Book in PDF, Epub and Kindle

Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.

Basic Theory of Ordinary Differential Equations

Basic Theory of Ordinary Differential Equations
Title Basic Theory of Ordinary Differential Equations PDF eBook
Author Po-Fang Hsieh
Publisher Springer Science & Business Media
Pages 496
Release 1999-06-22
Genre Mathematics
ISBN 9780387986999

Download Basic Theory of Ordinary Differential Equations Book in PDF, Epub and Kindle

Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.

Ordinary Differential Equations and Stability Theory:

Ordinary Differential Equations and Stability Theory:
Title Ordinary Differential Equations and Stability Theory: PDF eBook
Author David A. Sanchez
Publisher Courier Dover Publications
Pages 179
Release 2019-09-18
Genre Mathematics
ISBN 0486837599

Download Ordinary Differential Equations and Stability Theory: Book in PDF, Epub and Kindle

This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.

Ordinary Differential Equations: Basics and Beyond

Ordinary Differential Equations: Basics and Beyond
Title Ordinary Differential Equations: Basics and Beyond PDF eBook
Author David G. Schaeffer
Publisher Springer
Pages 565
Release 2016-11-10
Genre Mathematics
ISBN 1493963899

Download Ordinary Differential Equations: Basics and Beyond Book in PDF, Epub and Kindle

This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text (www.math.duke.edu/ode-book). Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom).

The Qualitative Theory of Ordinary Differential Equations

The Qualitative Theory of Ordinary Differential Equations
Title The Qualitative Theory of Ordinary Differential Equations PDF eBook
Author Fred Brauer
Publisher Courier Corporation
Pages 325
Release 2012-12-11
Genre Mathematics
ISBN 0486151514

Download The Qualitative Theory of Ordinary Differential Equations Book in PDF, Epub and Kindle

Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.

Ordinary Differential Equations

Ordinary Differential Equations
Title Ordinary Differential Equations PDF eBook
Author Morris Tenenbaum
Publisher Courier Corporation
Pages 852
Release 1985-10-01
Genre Mathematics
ISBN 0486649407

Download Ordinary Differential Equations Book in PDF, Epub and Kindle

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations
Title Geometrical Methods in the Theory of Ordinary Differential Equations PDF eBook
Author V.I. Arnold
Publisher Springer Science & Business Media
Pages 366
Release 2012-12-06
Genre Mathematics
ISBN 1461210372

Download Geometrical Methods in the Theory of Ordinary Differential Equations Book in PDF, Epub and Kindle

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.