Basic Theory Of Fractional Differential Equations (Second Edition)

Basic Theory Of Fractional Differential Equations (Second Edition)
Title Basic Theory Of Fractional Differential Equations (Second Edition) PDF eBook
Author Yong Zhou
Publisher World Scientific
Pages 380
Release 2016-10-20
Genre Mathematics
ISBN 9813148187

Download Basic Theory Of Fractional Differential Equations (Second Edition) Book in PDF, Epub and Kindle

This invaluable monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary and partial differential equations. It provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the technique of Picard operators, critical point theory and semigroup theory. Based on the research work carried out by the authors and other experts during the past seven years, the contents are very recent and comprehensive.In this edition, two new topics have been added, that is, fractional impulsive differential equations, and fractional partial differential equations including fractional Navier-Stokes equations and fractional diffusion equations.

Fractional Differential Equations

Fractional Differential Equations
Title Fractional Differential Equations PDF eBook
Author Igor Podlubny
Publisher Elsevier
Pages 366
Release 1998-10-27
Genre Mathematics
ISBN 0080531989

Download Fractional Differential Equations Book in PDF, Epub and Kindle

This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives

Theory and Applications of Fractional Differential Equations

Theory and Applications of Fractional Differential Equations
Title Theory and Applications of Fractional Differential Equations PDF eBook
Author A.A. Kilbas
Publisher Elsevier
Pages 550
Release 2006-02-16
Genre Mathematics
ISBN 9780444518323

Download Theory and Applications of Fractional Differential Equations Book in PDF, Epub and Kindle

This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.

The Analysis of Fractional Differential Equations

The Analysis of Fractional Differential Equations
Title The Analysis of Fractional Differential Equations PDF eBook
Author Kai Diethelm
Publisher Springer
Pages 251
Release 2010-08-18
Genre Mathematics
ISBN 3642145744

Download The Analysis of Fractional Differential Equations Book in PDF, Epub and Kindle

Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.

Basic Theory

Basic Theory
Title Basic Theory PDF eBook
Author Anatoly Kochubei
Publisher Walter de Gruyter GmbH & Co KG
Pages 490
Release 2019-02-19
Genre Mathematics
ISBN 3110571625

Download Basic Theory Book in PDF, Epub and Kindle

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.

Time-Fractional Differential Equations

Time-Fractional Differential Equations
Title Time-Fractional Differential Equations PDF eBook
Author Adam Kubica
Publisher Springer Nature
Pages 134
Release 2020-11-29
Genre Mathematics
ISBN 9811590664

Download Time-Fractional Differential Equations Book in PDF, Epub and Kindle

This book aims to establish a foundation for fractional derivatives and fractional differential equations. The theory of fractional derivatives enables considering any positive order of differentiation. The history of research in this field is very long, with its origins dating back to Leibniz. Since then, many great mathematicians, such as Abel, have made contributions that cover not only theoretical aspects but also physical applications of fractional calculus. The fractional partial differential equations govern phenomena depending both on spatial and time variables and require more subtle treatments. Moreover, fractional partial differential equations are highly demanded model equations for solving real-world problems such as the anomalous diffusion in heterogeneous media. The studies of fractional partial differential equations have continued to expand explosively. However we observe that available mathematical theory for fractional partial differential equations is not still complete. In particular, operator-theoretical approaches are indispensable for some generalized categories of solutions such as weak solutions, but feasible operator-theoretic foundations for wide applications are not available in monographs. To make this monograph more readable, we are restricting it to a few fundamental types of time-fractional partial differential equations, forgoing many other important and exciting topics such as stability for nonlinear problems. However, we believe that this book works well as an introduction to mathematical research in such vast fields.

Fractional Differential Equations

Fractional Differential Equations
Title Fractional Differential Equations PDF eBook
Author Bangti Jin
Publisher Springer Nature
Pages 377
Release 2021-07-22
Genre Mathematics
ISBN 303076043X

Download Fractional Differential Equations Book in PDF, Epub and Kindle

This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.