Matrix Theory
Title | Matrix Theory PDF eBook |
Author | Fuzhen Zhang |
Publisher | Springer Science & Business Media |
Pages | 290 |
Release | 2013-03-14 |
Genre | Mathematics |
ISBN | 1475757972 |
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Basic Matrix Theory
Title | Basic Matrix Theory PDF eBook |
Author | Leonard E. Fuller |
Publisher | Courier Dover Publications |
Pages | 257 |
Release | 2017-09-13 |
Genre | Mathematics |
ISBN | 0486818462 |
This guide to using matrices as a mathematical tool offers a model for procedure rather than an exposition of theory. Detailed examples illustrate the focus on computational methods. 1962 edition.
Introduction to Matrix Theory
Title | Introduction to Matrix Theory PDF eBook |
Author | Arindama Singh |
Publisher | Springer Nature |
Pages | 199 |
Release | 2021-08-16 |
Genre | Mathematics |
ISBN | 303080481X |
This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.
Linear Algebra and Matrix Theory
Title | Linear Algebra and Matrix Theory PDF eBook |
Author | Robert R. Stoll |
Publisher | Courier Corporation |
Pages | 290 |
Release | 2012-10-17 |
Genre | Mathematics |
ISBN | 0486623181 |
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Matrix Theory
Title | Matrix Theory PDF eBook |
Author | Joel N. Franklin |
Publisher | Courier Corporation |
Pages | 319 |
Release | 2012-07-31 |
Genre | Mathematics |
ISBN | 0486136388 |
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
A Combinatorial Approach to Matrix Theory and Its Applications
Title | A Combinatorial Approach to Matrix Theory and Its Applications PDF eBook |
Author | Richard A. Brualdi |
Publisher | CRC Press |
Pages | 288 |
Release | 2008-08-06 |
Genre | Mathematics |
ISBN | 9781420082241 |
Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. After reviewing the basics of graph theory, elementary counting formulas, fields, and vector spaces, the book explains the algebra of matrices and uses the König digraph to carry out simple matrix operations. It then discusses matrix powers, provides a graph-theoretical definition of the determinant using the Coates digraph of a matrix, and presents a graph-theoretical interpretation of matrix inverses. The authors develop the elementary theory of solutions of systems of linear equations and show how to use the Coates digraph to solve a linear system. They also explore the eigenvalues, eigenvectors, and characteristic polynomial of a matrix; examine the important properties of nonnegative matrices that are part of the Perron–Frobenius theory; and study eigenvalue inclusion regions and sign-nonsingular matrices. The final chapter presents applications to electrical engineering, physics, and chemistry. Using combinatorial and graph-theoretical tools, this book enables a solid understanding of the fundamentals of matrix theory and its application to scientific areas.
The Theory of Matrices
Title | The Theory of Matrices PDF eBook |
Author | Feliks Ruvimovich Gantmakher |
Publisher | |
Pages | 296 |
Release | 1960 |
Genre | Matrices |
ISBN |