Bandit Algorithms for Website Optimization
Title | Bandit Algorithms for Website Optimization PDF eBook |
Author | John Myles White |
Publisher | "O'Reilly Media, Inc." |
Pages | 88 |
Release | 2012-12-10 |
Genre | Computers |
ISBN | 1449341586 |
When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You’ll quickly learn the benefits of several simple algorithms—including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms—by working through code examples written in Python, which you can easily adapt for deployment on your own website. Learn the basics of A/B testing—and recognize when it’s better to use bandit algorithms Develop a unit testing framework for debugging bandit algorithms Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials
Bandit Algorithms
Title | Bandit Algorithms PDF eBook |
Author | Tor Lattimore |
Publisher | Cambridge University Press |
Pages | 537 |
Release | 2020-07-16 |
Genre | Business & Economics |
ISBN | 1108486827 |
A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.
Bandit Algorithms for Website Optimization
Title | Bandit Algorithms for Website Optimization PDF eBook |
Author | John White |
Publisher | "O'Reilly Media, Inc." |
Pages | 88 |
Release | 2013 |
Genre | Computers |
ISBN | 1449341330 |
When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You’ll quickly learn the benefits of several simple algorithms—including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms—by working through code examples written in Python, which you can easily adapt for deployment on your own website. Learn the basics of A/B testing—and recognize when it’s better to use bandit algorithms Develop a unit testing framework for debugging bandit algorithms Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials
Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems
Title | Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems PDF eBook |
Author | Sébastien Bubeck |
Publisher | Now Pub |
Pages | 138 |
Release | 2012 |
Genre | Computers |
ISBN | 9781601986269 |
In this monograph, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it analyzes some of the most important variants and extensions, such as the contextual bandit model.
Introduction to Multi-Armed Bandits
Title | Introduction to Multi-Armed Bandits PDF eBook |
Author | Aleksandrs Slivkins |
Publisher | |
Pages | 306 |
Release | 2019-10-31 |
Genre | Computers |
ISBN | 9781680836202 |
Multi-armed bandits is a rich, multi-disciplinary area that has been studied since 1933, with a surge of activity in the past 10-15 years. This is the first book to provide a textbook like treatment of the subject.
Algorithms for Reinforcement Learning
Title | Algorithms for Reinforcement Learning PDF eBook |
Author | Csaba Grossi |
Publisher | Springer Nature |
Pages | 89 |
Release | 2022-05-31 |
Genre | Computers |
ISBN | 3031015517 |
Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration
Algorithms for Decision Making
Title | Algorithms for Decision Making PDF eBook |
Author | Mykel J. Kochenderfer |
Publisher | MIT Press |
Pages | 701 |
Release | 2022-08-16 |
Genre | Computers |
ISBN | 0262047012 |
A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.