Axiomatic
Title | Axiomatic PDF eBook |
Author | Maria Tumarkin |
Publisher | Random House Australia |
Pages | 226 |
Release | 2021-05-04 |
Genre | Culture |
ISBN | 1761043587 |
Stories are not enough, even though they are essential. And books about history, books of psychology--the best of them take us closer, but still not close enough. Maria Tumarkin's Axiomatic is a boundary-shifting fusion of thinking, storytelling, reportage and meditation. It takes as its starting point five axioms: 'Time Heals All Wounds'; 'History Repeats Itself'; 'Those Who Forget the Past are Condemned to Repeat It'; 'Give Me a Child Before the Age of Seven and I Will Show You the Woman'; and 'You Can't Enter The Same River Twice.' These beliefs--or intuitions--about the role the past plays in our present are often evoked as if they are timeless and self-evident truths. It is precisely because they are neither, yet still we are persuaded by them, that they tell us a great deal about the forces that shape our culture and the way we live.
Axiomatic Geometry
Title | Axiomatic Geometry PDF eBook |
Author | John M. Lee |
Publisher | American Mathematical Soc. |
Pages | 490 |
Release | 2013-04-10 |
Genre | Mathematics |
ISBN | 0821884786 |
The story of geometry is the story of mathematics itself: Euclidean geometry was the first branch of mathematics to be systematically studied and placed on a firm logical foundation, and it is the prototype for the axiomatic method that lies at the foundation of modern mathematics. It has been taught to students for more than two millennia as a mode of logical thought. This book tells the story of how the axiomatic method has progressed from Euclid's time to ours, as a way of understanding what mathematics is, how we read and evaluate mathematical arguments, and why mathematics has achieved the level of certainty it has. It is designed primarily for advanced undergraduates who plan to teach secondary school geometry, but it should also provide something of interest to anyone who wishes to understand geometry and the axiomatic method better. It introduces a modern, rigorous, axiomatic treatment of Euclidean and (to a lesser extent) non-Euclidean geometries, offering students ample opportunities to practice reading and writing proofs while at the same time developing most of the concrete geometric relationships that secondary teachers will need to know in the classroom. -- P. [4] of cover.
Axiomatic Set Theory
Title | Axiomatic Set Theory PDF eBook |
Author | Patrick Suppes |
Publisher | Courier Corporation |
Pages | 290 |
Release | 2012-05-04 |
Genre | Mathematics |
ISBN | 0486136876 |
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.
Axiomatic Method and Category Theory
Title | Axiomatic Method and Category Theory PDF eBook |
Author | Andrei Rodin |
Publisher | Springer Science & Business Media |
Pages | 285 |
Release | 2013-10-14 |
Genre | Philosophy |
ISBN | 3319004042 |
This volume explores the many different meanings of the notion of the axiomatic method, offering an insightful historical and philosophical discussion about how these notions changed over the millennia. The author, a well-known philosopher and historian of mathematics, first examines Euclid, who is considered the father of the axiomatic method, before moving onto Hilbert and Lawvere. He then presents a deep textual analysis of each writer and describes how their ideas are different and even how their ideas progressed over time. Next, the book explores category theory and details how it has revolutionized the notion of the axiomatic method. It considers the question of identity/equality in mathematics as well as examines the received theories of mathematical structuralism. In the end, Rodin presents a hypothetical New Axiomatic Method, which establishes closer relationships between mathematics and physics. Lawvere's axiomatization of topos theory and Voevodsky's axiomatization of higher homotopy theory exemplify a new way of axiomatic theory building, which goes beyond the classical Hilbert-style Axiomatic Method. The new notion of Axiomatic Method that emerges in categorical logic opens new possibilities for using this method in physics and other natural sciences. This volume offers readers a coherent look at the past, present and anticipated future of the Axiomatic Method.
Axiomatic Theories of Truth
Title | Axiomatic Theories of Truth PDF eBook |
Author | Volker Halbach |
Publisher | Cambridge University Press |
Pages | 362 |
Release | 2014-02-27 |
Genre | Philosophy |
ISBN | 1316584232 |
At the centre of the traditional discussion of truth is the question of how truth is defined. Recent research, especially with the development of deflationist accounts of truth, has tended to take truth as an undefined primitive notion governed by axioms, while the liar paradox and cognate paradoxes pose problems for certain seemingly natural axioms for truth. In this book, Volker Halbach examines the most important axiomatizations of truth, explores their properties and shows how the logical results impinge on the philosophical topics related to truth. In particular, he shows that the discussion on topics such as deflationism about truth depends on the solution of the paradoxes. His book is an invaluable survey of the logical background to the philosophical discussion of truth, and will be indispensable reading for any graduate or professional philosopher in theories of truth.
Entropy and Diversity
Title | Entropy and Diversity PDF eBook |
Author | Tom Leinster |
Publisher | Cambridge University Press |
Pages | 457 |
Release | 2021-04-22 |
Genre | Language Arts & Disciplines |
ISBN | 1108832709 |
Discover the mathematical riches of 'what is diversity?' in a book that adds mathematical rigour to a vital ecological debate.
Axiomatic Set Theory
Title | Axiomatic Set Theory PDF eBook |
Author | G. Takeuti |
Publisher | Springer Science & Business Media |
Pages | 244 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 1468487515 |
This text deals with three basic techniques for constructing models of Zermelo-Fraenkel set theory: relative constructibility, Cohen's forcing, and Scott-Solovay's method of Boolean valued models. Our main concern will be the development of a unified theory that encompasses these techniques in one comprehensive framework. Consequently we will focus on certain funda mental and intrinsic relations between these methods of model construction. Extensive applications will not be treated here. This text is a continuation of our book, "I ntroduction to Axiomatic Set Theory," Springer-Verlag, 1971; indeed the two texts were originally planned as a single volume. The content of this volume is essentially that of a course taught by the first author at the University of Illinois in the spring of 1969. From the first author's lectures, a first draft was prepared by Klaus Gloede with the assistance of Donald Pelletier and the second author. This draft was then rcvised by the first author assisted by Hisao Tanaka. The introductory material was prepared by the second author who was also responsible for the general style of exposition throughout the text. We have inc1uded in the introductory material al1 the results from Boolean algebra and topology that we need. When notation from our first volume is introduced, it is accompanied with a deflnition, usually in a footnote. Consequently a reader who is familiar with elementary set theory will find this text quite self-contained.