Automorphic Forms and the Picard Number of an Elliptic Surface

Automorphic Forms and the Picard Number of an Elliptic Surface
Title Automorphic Forms and the Picard Number of an Elliptic Surface PDF eBook
Author Peter F. Stiller
Publisher Springer Science & Business Media
Pages 201
Release 2013-04-17
Genre Technology & Engineering
ISBN 3322907082

Download Automorphic Forms and the Picard Number of an Elliptic Surface Book in PDF, Epub and Kindle

In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N~ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E,Z). The rank of NS(E) will be denoted p and is known as the Picard number of E. 2 Every divisor determines a cohomology class in H(E,E) which is of I type (1,1), that is to say a class in H(E,9!) which can be viewed as a 2 subspace of H(E,E) via the Hodge decomposition. The Hodge Conjecture asserts in general that every rational cohomology class of type (p,p) is algebraic. In our case this is the Lefschetz Theorem on (I,l)-classes: Every cohomology class 2 2 is the class associated to some divisor. Here we are writing H (E,Z) for 2 its image under the natural mapping into H (E,t). Thus NS(E) modulo 2 torsion is Hl(E,n!) n H(E,Z) and th 1 b i f h -~ p measures e a ge ra c part 0 t e cohomology.

Special Values of Dirichlet Series, Monodromy, and the Periods of Automorphic Forms

Special Values of Dirichlet Series, Monodromy, and the Periods of Automorphic Forms
Title Special Values of Dirichlet Series, Monodromy, and the Periods of Automorphic Forms PDF eBook
Author Peter Stiller
Publisher American Mathematical Soc.
Pages 123
Release 1984
Genre Mathematics
ISBN 0821823000

Download Special Values of Dirichlet Series, Monodromy, and the Periods of Automorphic Forms Book in PDF, Epub and Kindle

In this paper we explore a relationship that exists between the classical cusp form for subgroups of finite index in [italic]SL2([double-struck capital]Z) and certain differential equations, and we develop a connection between the equation's monodromy representation and the special values in the critical strip of the Dirichlet series associated to the cusp form.

Manifolds and Modular Forms

Manifolds and Modular Forms
Title Manifolds and Modular Forms PDF eBook
Author Friedrich Hirzebruch
Publisher Springer Science & Business Media
Pages 216
Release 2013-06-29
Genre Technology & Engineering
ISBN 3663107264

Download Manifolds and Modular Forms Book in PDF, Epub and Kindle

This book provides a comprehensive introduction to the theory of elliptic genera due to Ochanine, Landweber, Stong, and others. The theory describes a new cobordism invariant for manifolds in terms of modular forms. The book evolved from notes of a course given at the University of Bonn. After providing some background material elliptic genera are constructed, including the classical genera signature and the index of the Dirac operator as special cases. Various properties of elliptic genera are discussed, especially their behaviour in fibre bundles and rigidity for group actions. For stably almost complex manifolds the theory is extended to elliptic genera of higher level. The text is in most parts self-contained. The results are illustrated by explicit examples and by comparison with well-known theorems. The relevant aspects of the theory of modular forms are derived in a seperate appendix, providing also a useful reference for mathematicians working in this field.

Calabi-Yau Varieties and Mirror Symmetry

Calabi-Yau Varieties and Mirror Symmetry
Title Calabi-Yau Varieties and Mirror Symmetry PDF eBook
Author Noriko Yui
Publisher American Mathematical Soc.
Pages 385
Release 2003
Genre Mathematics
ISBN 0821833553

Download Calabi-Yau Varieties and Mirror Symmetry Book in PDF, Epub and Kindle

The idea of mirror symmetry originated in physics, but in recent years, the field of mirror symmetry has exploded onto the mathematical scene. It has inspired many new developments in algebraic and arithmetic geometry, toric geometry, the theory of Riemann surfaces, and infinite-dimensional Lie algebras among others. The developments in physics stimulated the interest of mathematicians in Calabi-Yau varieties. This led to the realization that the time is ripe for mathematicians, armed with many concrete examples and alerted by the mirror symmetry phenomenon, to focus on Calabi-Yau varieties and to test for these special varieties some of the great outstanding conjectures, e.g., the modularity conjecture for Calabi-Yau threefolds defined over the rationals, the Bloch-Beilinson conjectures, regulator maps of higher algebraic cycles, Picard-Fuchs differential equations, GKZ hypergeometric systems, and others. The articles in this volume report on current developments. The papers are divided roughly into two categories: geometric methods and arithmetic methods. One of the significant outcomes of the workshop is that we are finally beginning to understand the mirror symmetry phenomenon from the arithmetic point of view, namely, in terms of zeta-functions and L-series of mirror pairs of Calabi-Yau threefolds. The book is suitable for researchers interested in mirror symmetry and string theory.

Modular Forms and String Duality

Modular Forms and String Duality
Title Modular Forms and String Duality PDF eBook
Author Noriko Yui, Helena Verrill, and Charles F. Doran
Publisher American Mathematical Soc.
Pages 324
Release
Genre Duality (Mathematics)
ISBN 9780821871577

Download Modular Forms and String Duality Book in PDF, Epub and Kindle

"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.

$p$-Adic Methods in Number Theory and Algebraic Geometry

$p$-Adic Methods in Number Theory and Algebraic Geometry
Title $p$-Adic Methods in Number Theory and Algebraic Geometry PDF eBook
Author Alan Adolphson
Publisher American Mathematical Soc.
Pages 254
Release 1992
Genre Mathematics
ISBN 0821851454

Download $p$-Adic Methods in Number Theory and Algebraic Geometry Book in PDF, Epub and Kindle

Two meetings of the AMS in the autumn of 1989 - one at the Stevens Institute of Technology and the other at Ball State University - included Special Sessions on the role of p-adic methods in number theory and algebraic geometry. This volume grew out of these Special Sessions. Drawn from a wide area of mathematics, the articles presented here provide an excellent sampling of the broad range of trends and applications in p-adic methods.

Rational Points on Modular Elliptic Curves

Rational Points on Modular Elliptic Curves
Title Rational Points on Modular Elliptic Curves PDF eBook
Author Henri Darmon
Publisher American Mathematical Soc.
Pages 146
Release 2004
Genre Mathematics
ISBN 0821828681

Download Rational Points on Modular Elliptic Curves Book in PDF, Epub and Kindle

The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.