Automatic Speech Recognition and Translation for Low Resource Languages

Automatic Speech Recognition and Translation for Low Resource Languages
Title Automatic Speech Recognition and Translation for Low Resource Languages PDF eBook
Author L. Ashok Kumar
Publisher John Wiley & Sons
Pages 428
Release 2024-03-28
Genre Computers
ISBN 1394214170

Download Automatic Speech Recognition and Translation for Low Resource Languages Book in PDF, Epub and Kindle

AUTOMATIC SPEECH RECOGNITION and TRANSLATION for LOW-RESOURCE LANGUAGES This book is a comprehensive exploration into the cutting-edge research, methodologies, and advancements in addressing the unique challenges associated with ASR and translation for low-resource languages. Automatic Speech Recognition and Translation for Low Resource Languages contains groundbreaking research from experts and researchers sharing innovative solutions that address language challenges in low-resource environments. The book begins by delving into the fundamental concepts of ASR and translation, providing readers with a solid foundation for understanding the subsequent chapters. It then explores the intricacies of low-resource languages, analyzing the factors that contribute to their challenges and the significance of developing tailored solutions to overcome them. The chapters encompass a wide range of topics, ranging from both the theoretical and practical aspects of ASR and translation for low-resource languages. The book discusses data augmentation techniques, transfer learning, and multilingual training approaches that leverage the power of existing linguistic resources to improve accuracy and performance. Additionally, it investigates the possibilities offered by unsupervised and semi-supervised learning, as well as the benefits of active learning and crowdsourcing in enriching the training data. Throughout the book, emphasis is placed on the importance of considering the cultural and linguistic context of low-resource languages, recognizing the unique nuances and intricacies that influence accurate ASR and translation. Furthermore, the book explores the potential impact of these technologies in various domains, such as healthcare, education, and commerce, empowering individuals and communities by breaking down language barriers. Audience The book targets researchers and professionals in the fields of natural language processing, computational linguistics, and speech technology. It will also be of interest to engineers, linguists, and individuals in industries and organizations working on cross-lingual communication, accessibility, and global connectivity.

Speech Synthesis and Recognition

Speech Synthesis and Recognition
Title Speech Synthesis and Recognition PDF eBook
Author Wendy Holmes
Publisher CRC Press
Pages 320
Release 2002-09-11
Genre Technology & Engineering
ISBN 1351988689

Download Speech Synthesis and Recognition Book in PDF, Epub and Kindle

With the growing impact of information technology on daily life, speech is becoming increasingly important for providing a natural means of communication between humans and machines. This extensively reworked and updated new edition of Speech Synthesis and Recognition is an easy-to-read introduction to current speech technology. Aimed at advanced undergraduates and graduates in electronic engineering, computer science and information technology, the book is also relevant to professional engineers who need to understand enough about speech technology to be able to apply it successfully and to work effectively with speech experts. No advanced mathematical ability is required and no specialist prior knowledge of phonetics or of the properties of speech signals is assumed.

Speech-to-Speech Translation

Speech-to-Speech Translation
Title Speech-to-Speech Translation PDF eBook
Author Yutaka Kidawara
Publisher Springer Nature
Pages 103
Release 2019-11-22
Genre Computers
ISBN 9811505950

Download Speech-to-Speech Translation Book in PDF, Epub and Kindle

This book provides the readers with retrospective and prospective views with detailed explanations of component technologies, speech recognition, language translation and speech synthesis. Speech-to-speech translation system (S2S) enables to break language barriers, i.e., communicate each other between any pair of person on the glove, which is one of extreme dreams of humankind. People, society, and economy connected by S2S will demonstrate explosive growth without exception. In 1986, Japan initiated basic research of S2S, then the idea spread world-wide and were explored deeply by researchers during three decades. Now, we see S2S application on smartphone/tablet around the world. Computational resources such as processors, memories, wireless communication accelerate this computation-intensive systems and accumulation of digital data of speech and language encourage recent approaches based on machine learning. Through field experiments after long research in laboratories, S2S systems are being well-developed and now ready to utilized in daily life. Unique chapter of this book is end-2-end evaluation by comparing system’s performance and human competence. The effectiveness of the system would be understood by the score of this evaluation. The book will end with one of the next focus of S2S will be technology of simultaneous interpretation for lecture, broadcast news and so on.

Information Retrieval Technology

Information Retrieval Technology
Title Information Retrieval Technology PDF eBook
Author Fu Lee Wang
Publisher Springer Nature
Pages 207
Release 2020-02-26
Genre Computers
ISBN 3030428354

Download Information Retrieval Technology Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 15th Information Retrieval Technology Conference, AIRS 2019, held in Hong Kong, China, in November 2019.The 14 full papers presented together with 3 short papers were carefully reviewed and selected from 27 submissions. The scope of the conference covers applications, systems, technologies and theory aspects of information retrieval in text, audio, image, video and multimedia data.

Statistical Machine Translation

Statistical Machine Translation
Title Statistical Machine Translation PDF eBook
Author Philipp Koehn
Publisher Cambridge University Press
Pages 447
Release 2010
Genre Computers
ISBN 0521874157

Download Statistical Machine Translation Book in PDF, Epub and Kindle

The dream of automatic language translation is now closer thanks to recent advances in the techniques that underpin statistical machine translation. This class-tested textbook from an active researcher in the field, provides a clear and careful introduction to the latest methods and explains how to build machine translation systems for any two languages. It introduces the subject's building blocks from linguistics and probability, then covers the major models for machine translation: word-based, phrase-based, and tree-based, as well as machine translation evaluation, language modeling, discriminative training and advanced methods to integrate linguistic annotation. The book also reports the latest research, presents the major outstanding challenges, and enables novices as well as experienced researchers to make novel contributions to this exciting area. Ideal for students at undergraduate and graduate level, or for anyone interested in the latest developments in machine translation.

Speech & Language Processing

Speech & Language Processing
Title Speech & Language Processing PDF eBook
Author Dan Jurafsky
Publisher Pearson Education India
Pages 912
Release 2000-09
Genre
ISBN 9788131716724

Download Speech & Language Processing Book in PDF, Epub and Kindle

Deep Learning for NLP and Speech Recognition

Deep Learning for NLP and Speech Recognition
Title Deep Learning for NLP and Speech Recognition PDF eBook
Author Uday Kamath
Publisher Springer
Pages 640
Release 2019-06-10
Genre Computers
ISBN 3030145964

Download Deep Learning for NLP and Speech Recognition Book in PDF, Epub and Kindle

This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.