Automatic Nonuniform Random Variate Generation
Title | Automatic Nonuniform Random Variate Generation PDF eBook |
Author | Wolfgang Hörmann |
Publisher | Springer Science & Business Media |
Pages | 456 |
Release | 2004-01-12 |
Genre | Business & Economics |
ISBN | 9783540406525 |
Non-uniform random variate generation is an established research area in the intersection of mathematics, statistics and computer science. Although random variate generation with popular standard distributions have become part of every course on discrete event simulation and on Monte Carlo methods, the recent concept of universal (also called automatic or black-box) random variate generation can only be found dispersed in literature. This new concept has great practical advantages that are little known to most simulation practitioners. Being unique in its overall organization the book covers not only the mathematical and statistical theory, but also deals with the implementation of such methods. All algorithms introduced in the book are designed for practical use in simulation and have been coded and made available by the authors. Examples of possible applications of the presented algorithms (including option pricing, VaR and Bayesian statistics) are presented at the end of the book.
Automatic Nonuniform Random Variate Generation
Title | Automatic Nonuniform Random Variate Generation PDF eBook |
Author | Wolfgang Hörmann |
Publisher | Springer Science & Business Media |
Pages | 439 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 3662059460 |
The recent concept of universal (also called automatic or black-box) random variate generation can only be found dispersed in the literature. Being unique in its overall organization, the book covers not only the mathematical and statistical theory but also deals with the implementation of such methods. All algorithms introduced in the book are designed for practical use in simulation and have been coded and made available by the authors. Examples of possible applications of the presented algorithms (including option pricing, VaR and Bayesian statistics) are presented at the end of the book.
Non-Uniform Random Variate Generation
Title | Non-Uniform Random Variate Generation PDF eBook |
Author | Luc Devroye |
Publisher | Springer Science & Business Media |
Pages | 859 |
Release | 2013-11-22 |
Genre | Mathematics |
ISBN | 1461386438 |
Thls text ls about one small fteld on the crossroads of statlstlcs, operatlons research and computer sclence. Statistleians need random number generators to test and compare estlmators before uslng them ln real l fe. In operatlons research, random numbers are a key component ln arge scale slmulatlons. Computer sclen tlsts need randomness ln program testlng, game playlng and comparlsons of algo rlthms. The appl catlons are wlde and varled. Yet all depend upon the same com puter generated random numbers. Usually, the randomness demanded by an appl catlon has some bullt-ln structure: typlcally, one needs more than just a sequence of Independent random blts or Independent uniform 0,1] random vari ables. Some users need random variables wlth unusual densltles, or random com blnatorlal objects wlth speclftc propertles, or random geometrlc objects, or ran dom processes wlth weil deftned dependence structures. Thls ls preclsely the sub ject area of the book, the study of non-uniform random varlates. The plot evolves around the expected complexlty of random varlate genera tlon algorlthms. We set up an ldeal zed computatlonal model (wlthout overdolng lt), we lntroduce the notlon of unlformly bounded expected complexlty, and we study upper and lower bounds for computatlonal complexlty. In short, a touch of computer sclence ls added to the fteld. To keep everythlng abstract, no tlmlngs or computer programs are lncluded. Thls was a Iabor of Iove. George Marsagl a created CS690, a course on ran dom number generat on at the School of Computer Sclence of McG ll Unlverslty."
A Guide to Simulation
Title | A Guide to Simulation PDF eBook |
Author | P. Bratley |
Publisher | Springer Science & Business Media |
Pages | 399 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 146840167X |
Simulation means driving a model of a system with suitable inputs and observing the corresponding outputs. It is widely applied in engineering, in business, and in the physical and social sciences. Simulation method ology araws on computer. science, statistics, and operations research and is now sufficiently developed and coherent to be called a discipline in its own right. A course in simulation is an essential part of any operations re search or computer science program. A large fraction of applied work in these fields involves simulation; the techniques of simulation, as tools, are as fundamental as those of linear programming or compiler construction, for example. Simulation sometimes appears deceptively easy, but perusal of this book will reveal unexpected depths. Many simulation studies are statistically defective and many simulation programs are inefficient. We hope that our book will help to remedy this situation. It is intended to teach how to simulate effectively. A simulation project has three crucial components, each of which must always be tackled: (1) data gathering, model building, and validation; (2) statistical design and estimation; (3) programming and implementation. Generation of random numbers (Chapters 5 and 6) pervades simulation, but unlike the three components above, random number generators need not be constructed from scratch for each project. Usually random number packages are available. That is one reason why the chapters on random numbers, which contain mainly reference material, follow the ch!lPters deal ing with experimental design and output analysis.
Handbook of Computational Statistics
Title | Handbook of Computational Statistics PDF eBook |
Author | James E. Gentle |
Publisher | Springer |
Pages | 0 |
Release | 2017-05-04 |
Genre | Computers |
ISBN | 9783662517659 |
The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.
Monte Carlo and Quasi-Monte Carlo Sampling
Title | Monte Carlo and Quasi-Monte Carlo Sampling PDF eBook |
Author | Christiane Lemieux |
Publisher | Springer Science & Business Media |
Pages | 373 |
Release | 2009-04-03 |
Genre | Mathematics |
ISBN | 038778165X |
Quasi–Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute. This book presents essential tools for using quasi–Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods—uniform and non-uniform random number generation, variance reduction techniques—but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi–random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi–Monte Carlo counterpart. The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi–Monte Carlo methods and researchers interested in an up-to-date guide to these methods.
Discrete Choice Methods with Simulation
Title | Discrete Choice Methods with Simulation PDF eBook |
Author | Kenneth Train |
Publisher | Cambridge University Press |
Pages | 399 |
Release | 2009-07-06 |
Genre | Business & Economics |
ISBN | 0521766559 |
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.