Autoignition Response of N-butanol and Its Blend with Primary Reference Fuel Constituents of Gasoline

Autoignition Response of N-butanol and Its Blend with Primary Reference Fuel Constituents of Gasoline
Title Autoignition Response of N-butanol and Its Blend with Primary Reference Fuel Constituents of Gasoline PDF eBook
Author
Publisher
Pages 14
Release 2015
Genre
ISBN

Download Autoignition Response of N-butanol and Its Blend with Primary Reference Fuel Constituents of Gasoline Book in PDF, Epub and Kindle

We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results are compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.

The Autoignition Chemistries of Primary Reference Fuels, Olefin/paraffin Binary Mixtures, and Non-linear Octane Blending

The Autoignition Chemistries of Primary Reference Fuels, Olefin/paraffin Binary Mixtures, and Non-linear Octane Blending
Title The Autoignition Chemistries of Primary Reference Fuels, Olefin/paraffin Binary Mixtures, and Non-linear Octane Blending PDF eBook
Author William R. Leppard
Publisher
Pages 23
Release 1992
Genre Gasoline
ISBN

Download The Autoignition Chemistries of Primary Reference Fuels, Olefin/paraffin Binary Mixtures, and Non-linear Octane Blending Book in PDF, Epub and Kindle

Flammability and Autoignition of Hydrocarbon Fuels Under Static and Dynamic Conditions

Flammability and Autoignition of Hydrocarbon Fuels Under Static and Dynamic Conditions
Title Flammability and Autoignition of Hydrocarbon Fuels Under Static and Dynamic Conditions PDF eBook
Author J. M. Kuchta
Publisher
Pages 30
Release 1962
Genre Fuel
ISBN

Download Flammability and Autoignition of Hydrocarbon Fuels Under Static and Dynamic Conditions Book in PDF, Epub and Kindle

Autoignition Study of Ethanol and Heptane in a Rapid Compression Machine

Autoignition Study of Ethanol and Heptane in a Rapid Compression Machine
Title Autoignition Study of Ethanol and Heptane in a Rapid Compression Machine PDF eBook
Author Varun Anthony Davies
Publisher
Pages 72
Release 2015
Genre Chemical kinetics
ISBN

Download Autoignition Study of Ethanol and Heptane in a Rapid Compression Machine Book in PDF, Epub and Kindle

Practical fuels are a complex mixture of thousands of hydrocarbon compounds, making it challenging and difficult to study their combustion behavior. It's generally agreed that in order to study these complex practical fuels a much simpler approach of studying simple fuel surrogates containing limited number of components is more feasible. Ethanol and n-heptane have been studied as primary reference fuels in the surrogate study of gasoline and diesel over the past few decades. The objective of the following thesis has been to study the autoignition characteristics of ethanol and n-heptane and validate chemical kinetic mechanisms. The validation of a chemical kinetic mechanism provides a deeper insight into the combustion behavior of the fuels which can be further used to study advanced combustion concepts. Experiments have been conducted on the rapid compression machine (RCM) and validated against mechanisms from literature study. Rapid compression machines have been primarily used to study chemical kinetics at low to intermediate temperatures and high pressures for their accuracy and reproducibility. For the following study experiments span over a range of temperature (650-1000 K), pressure (10, 15 and 20 bar) and equivalence ratio ([phi]=0.3, 0.5, 1). Experimental data based on the adiabatic volumetric expansion approach have been modeled numerically using the Sandia SENKIN code in conjunction with CHEMKIN. Experiments have been primarily focused on validating kinetic mechanisms at low to intermediate temperatures and elevated pressures. Ignition delay time data from experiments have been deduced based on the pressure and time histories. A brute sensitivity and flux analysis has been performed to reveal the key sensitive reactions and the dominant reaction pathways followed under the present experimental conditions. Improvements have been suggested and discrepancies noted in order to develop a valid chemical kinetic mechanism. Under the present experimental conditions for the study of ethanol, reactions involving hydroperoxyl radicals, namely C2H5OH+HȮ2 and CH3CHO+ HȮ2 as well as the formation of H2O2 from HȮ2 radical and its subsequent decomposition have been found to be sensitive. Based on the following, improvements and developements have been suggested to increase the accuracy and predictability of the mechanisms studied. Ignition delay data from experiments have been compared against those obtained from the mechanism used in the study for n-heptane. Discrepancies have been found in the low temperature region, with the mechanism under predicting the first ignition delay. The causes for the discrepancy have been noted to be due to the NTC behaviour exhibited during the two stage ignition of n-heptane. At low temperatures the reaction pathway proceeded by chain branching mainly due to the ketohydroperoxide species reaction pathway has been analysed. As the temperature of the reaction increases the reaction pathway is dominated by the ȮOH species propagation resulting in the formation of conjugate olefins and [Beta]-decomposition products, a further investigation of which can help improve the predictability of the mechanism.

Homogeneous Charge Compression Ignition (HCCI) Engines

Homogeneous Charge Compression Ignition (HCCI) Engines
Title Homogeneous Charge Compression Ignition (HCCI) Engines PDF eBook
Author Fuquan Zhao
Publisher SAE International
Pages 658
Release 2003-01-01
Genre Transportation
ISBN 9780768011234

Download Homogeneous Charge Compression Ignition (HCCI) Engines Book in PDF, Epub and Kindle

The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems. A profound increase in the level of research and development of this technology has occurred in the last decade. This book gathers contributions from experts in both industry and academia, providing a basic introduction to the state-of-the-art of HCCI technology, a critical review of current HCCI research and development efforts, and perspective for the future. Chapters cover: Gasoline-Fueled HCCI Engines; Diesel-Fueled HCCI Engines; Alternative Fuels and Fuel Additives for HCCI Engines; HCCI Control and Operating Range Extension; Kinetics of HCCI Combustion; HCCI Engine Modeling Approaches.In addition to the extensive overview of terminology, physical processes, and future needs, each chapter also features select SAE papers (a total of 41 are included in the book), as well as a comprehensive list of references related to the subjects. Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues provides a valuable base of information for those interested in learning about this rapidly-progressing technology which has the potential to enhance fuel economy and reduce emissions.

Autoignition and Emissions-related Chemistry of Primary Reference Fuels and Gasoline Components

Autoignition and Emissions-related Chemistry of Primary Reference Fuels and Gasoline Components
Title Autoignition and Emissions-related Chemistry of Primary Reference Fuels and Gasoline Components PDF eBook
Author Charles V. Callahan
Publisher
Pages 396
Release 1995
Genre
ISBN

Download Autoignition and Emissions-related Chemistry of Primary Reference Fuels and Gasoline Components Book in PDF, Epub and Kindle

Ignition Behavior of Gasolines and Surrogate Fuels in Low Temperature Combustion Strategies

Ignition Behavior of Gasolines and Surrogate Fuels in Low Temperature Combustion Strategies
Title Ignition Behavior of Gasolines and Surrogate Fuels in Low Temperature Combustion Strategies PDF eBook
Author Vickey Kalaskar
Publisher
Pages
Release 2015
Genre
ISBN

Download Ignition Behavior of Gasolines and Surrogate Fuels in Low Temperature Combustion Strategies Book in PDF, Epub and Kindle

This dissertation discusses the results from three different studies aimed at understanding the importance of fuel chemical structure during low temperature combustion (LTC) strategies, like homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) employed in internal combustion (IC) engines wherein the focus is on high octane fuels. Boosted intake air operation combined with exhaust gas recirculation, internal as well as external, has become a standard path for expanding the load limits of IC engines employing LTC strategies mentioned above as well as conventional diesel and spark ignition (SI) engines. However, the effects of fuel compositional variation have not been fully explored. The first study focusses on three different fuels, where each of them were evaluated using a single cylinder boosted HCCI engine using negative valve overlap. The three fuels investigated were: a regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 -- 25% EGR), and injection timing were conducted to identify fuel-specific effects. While significant fuel compositional differences existed, the results showed that all these fuels achieved comparable operation with minor changes in operational conditions. Further, it was shown that the available enthalpy from the exhaust would not be sufficient to satisfy the boost requirements at higher load operation by doing an analysis of the required turbocharger efficiency. While the first study concentrated on load expansion of HCCI, it is important to mention that controlling LTC strategies is difficult under low load or idle operating conditions. To ensure stable operation, fuel injection in the negative valve overlap (NVO) is used as one of method of achieving combustion control. However the combustion chemistry under high temperature and fuel rich conditions that exist during the NVO have not been previously explored. The second study focused on examining the products of fuel rich chemistry as a result of fuel injection in the NVO. In this study, a unique six stroke cycle was used to segregate the exhaust from the NVO and to study the chemistry of the range of fuels injected during NVO under low oxygen conditions. The fuels investigated were methanol, ethanol, iso-butanol, and iso-octane. It was observed that the products of reactions under NVO conditions were highly dependent on the injected fuel's structure with iso-octane producing less than 1.5% hydrogen and methanol producing more than 8%. However a weak dependence was observed on NVO duration and initial temperature, indicating that NVO reforming was kinetically limited. Finally, the experimental trends were compared with CHEMKIN (single zone, 0-D model) predictions using multiple kinetic mechanism that were readily available through literature. Due to the simplicity of the model and inadequate information on the fuel injection process, the experimental data was not modeled well with the mechanisms tested. Some of the shortcomings of the 0-D model were probably due to the model ignoring temperature and composition spatial inhomogeneities and evaporative cooling from fuel vaporization.Though the results from the NVO injection and boosted NVO-HCCI studies are enlightening, the fundamentals of the autoignition behavior of gasoline, alcohols, and their mixtures are not entirely understood despite the interest in high octane fuels in compression engines from a point of view of better thermal efficiency. The third study focused on higher octane blends consisting of binary and ternary mixtures of n-heptane and/or iso-octane, and a fuel of interest. These fuels of interest were toluene, ethanol, and iso-butanol. In this study, the autoignition of such blends is studied under lean conditions ([phi] = 0.25) with varying intake pressure (atmospheric to 3 bar, abs) and at a constant intake temperature of 155 °C. The blends consisted of varying percentages of fuels of interest and their research octane number (RON) approximately estimated at 100 and 80. For comparison, neat iso-octane was selected as RON 100 fuel and PRF 80 blend was selected as RON 80 fuel. It was observed that the blends with a higher percentage of n-heptane showed a stronger tendency to autoignite at lower intake pressures. However, as the intake pressure was increased, the non-reactive components, in this case, the higher octane blend components (toluene, ethanol, and iso-butanol), reduced this tendency subsequently delaying the critical compression ratio (CCR) of the blends. The heat release analysis revealed that the higher octane components in the blends reduced the low temperature reactivity of n-heptane and iso-octane. GC-MS and GC-FID analysis of the partially compressed fuel also indicated that the higher octane components did affect the conversion of the more reactive components, n-heptane and iso-octane, into their partially oxidized branched hydrocarbons in the binary/ternary blends, and reduced the overall reactivity which resulted in a delayed CCR at higher intake pressures.