Autoignition and Chemical-Kinetic Mechanisms of Homogeneous Charge Compression Ignition Combustion for the Fuels with Various Autoignition Reactivity

Autoignition and Chemical-Kinetic Mechanisms of Homogeneous Charge Compression Ignition Combustion for the Fuels with Various Autoignition Reactivity
Title Autoignition and Chemical-Kinetic Mechanisms of Homogeneous Charge Compression Ignition Combustion for the Fuels with Various Autoignition Reactivity PDF eBook
Author Dongwon Jung
Publisher
Pages
Release 2018
Genre Science
ISBN

Download Autoignition and Chemical-Kinetic Mechanisms of Homogeneous Charge Compression Ignition Combustion for the Fuels with Various Autoignition Reactivity Book in PDF, Epub and Kindle

This work demonstrates the autoignition and chemical-kinetic mechanisms of homogeneous charge compression ignition (HCCI) combustion for the fuels with various autoignition reactivity. This is done for four fuels: methane, dimethyl ether (DME), iso-octane and n-heptane. Methane and iso-octane are selected as the single-stage ignition fuel, and DME and n-heptane are selected as the two-stage ignition fuel. As a tool for understanding the characteristics of autoignition and combustion process in HCCI engine, a zero-dimensional single-zone engine model of 'CHEMKIN' in Chemkin-Pro was used. The complete compression and expansion strokes were modeled using an engine with a connecting-rod length to crank-radius ratio of 3.5 and a compression ratio of 13. A detailed chemical-kinetic mechanism for methane and DME is Mech_56.54 (113 species and 710 reactions). For iso-octane and n-heptane, a detailed chemical-kinetic mechanism from Lawrence Livermore National Laboratory (1034 species and 4236 reactions) is used. The results show that methane and iso-octane exhibit only the main heat release, 'high-temperature heat release (HTHR)' by high-temperature reactions (HTR). In contrast, both DME and n-heptane exhibit the first heat release 'low-temperature heat release (LTHR)' associated with low-temperature reactions (LTR) before HTHR.

Advanced Chemical Kinetics

Advanced Chemical Kinetics
Title Advanced Chemical Kinetics PDF eBook
Author Muhammad Akhyar Farrukh
Publisher BoD – Books on Demand
Pages 226
Release 2018-02-21
Genre Science
ISBN 9535138154

Download Advanced Chemical Kinetics Book in PDF, Epub and Kindle

The book on Advanced Chemical Kinetics gives insight into different aspects of chemical reactions both at the bulk and nanoscale level and covers topics from basic to high class. This book has been divided into three sections: (i) "Kinetics Modeling and Mechanism," (ii) "Kinetics of Nanomaterials," and (iii) "Kinetics Techniques." The first section consists of six chapters with a variety of topics like activation energy and complexity of chemical reactions; the measurement of reaction routes; mathematical modeling analysis and simulation of enzyme kinetics; mechanisms of homogeneous charge compression ignition combustion for the fuels; photophysical processes and photochemical changes; the mechanism of hydroxyl radical, hydrate electron, and hydrogen atom; and acceptorless alcohol dehydrogenation. The understanding of the kinetics of nanomaterials, to bridge the knowledge gap, is presented in the second section. The third section highlights an overview of experimental techniques used to study the mechanism of reactions.

A Study of Autoignition in a Premixed Charge, Internal Combustion Engine Using Comprehensive Chemical Kinetics

A Study of Autoignition in a Premixed Charge, Internal Combustion Engine Using Comprehensive Chemical Kinetics
Title A Study of Autoignition in a Premixed Charge, Internal Combustion Engine Using Comprehensive Chemical Kinetics PDF eBook
Author Philip Michael Dimpelfeld
Publisher
Pages 534
Release 1985
Genre Internal combustion engines
ISBN

Download A Study of Autoignition in a Premixed Charge, Internal Combustion Engine Using Comprehensive Chemical Kinetics Book in PDF, Epub and Kindle

Low-temperature Combustion and Autoignition

Low-temperature Combustion and Autoignition
Title Low-temperature Combustion and Autoignition PDF eBook
Author M.J. Pilling
Publisher Elsevier
Pages 823
Release 1997-11-27
Genre Science
ISBN 0080535658

Download Low-temperature Combustion and Autoignition Book in PDF, Epub and Kindle

Combustion has played a central role in the development of our civilization which it maintains today as its predominant source of energy. The aim of this book is to provide an understanding of both fundamental and applied aspects of low-temperature combustion chemistry and autoignition. The topic is rooted in classical observational science and has grown, through an increasing understanding of the linkage of the phenomenology to coupled chemical reactions, to quite profound advances in the chemical kinetics of both complex and elementary reactions. The driving force has been both the intrinsic interest of an old and intriguing phenomenon and the centrality of its applications to our economic prosperity. The volume provides a coherent view of the subject while, at the same time, each chapter is self-contained.

Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification
Title Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification PDF eBook
Author Benjamin Matthew Wolk
Publisher
Pages 115
Release 2014
Genre
ISBN

Download Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification Book in PDF, Epub and Kindle

Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations. Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake pressure such that a sizable reduction in the maximum pressure rise rate compared to HCCI can be achieved.

Hcci and Cai Engines for the Automotive Industry

Hcci and Cai Engines for the Automotive Industry
Title Hcci and Cai Engines for the Automotive Industry PDF eBook
Author H Zhao
Publisher Elsevier
Pages 557
Release 2007-08-02
Genre Technology & Engineering
ISBN 184569354X

Download Hcci and Cai Engines for the Automotive Industry Book in PDF, Epub and Kindle

Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality.HCCI and CAI engines for the automotive industry presents the state-of-the-art in research and development on an international basis, as a one-stop reference work. The background to the development of HCCI / CAI engine technology is described. Basic principles, the technologies and their potential applications, strengths and weaknesses, as well as likely future trends and sources of further information are reviewed in the areas of gasoline HCCI / CAI engines; diesel HCCI engines; HCCI / CAI engines with alternative fuels; and advanced modelling and experimental techniques. The book provides an invaluable source of information for scientific researchers, R&D engineers and managers in the automotive engineering industry worldwide. - Presents the state-of-the-art in research and development on an international basis - An invaluable source of information for scientific researchers, R&D engineers and managers in the automotive engineering industry worldwide - Looks at one of the most promising engine technologies around

Homogeneous Charge Compression Ignition (HCCI)

Homogeneous Charge Compression Ignition (HCCI)
Title Homogeneous Charge Compression Ignition (HCCI) PDF eBook
Author
Publisher
Pages 332
Release 2004
Genre Internal combustion engines
ISBN

Download Homogeneous Charge Compression Ignition (HCCI) Book in PDF, Epub and Kindle