Attractors for Semigroups and Evolution Equations
Title | Attractors for Semigroups and Evolution Equations PDF eBook |
Author | Olga A. Ladyzhenskaya |
Publisher | Cambridge University Press |
Pages | |
Release | 2022-06-09 |
Genre | Mathematics |
ISBN | 1009229796 |
In this volume, Olga A. Ladyzhenskaya expands on her highly successful 1991 Accademia Nazionale dei Lincei lectures. The lectures were devoted to questions of the behaviour of trajectories for semigroups of nonlinear bounded continuous operators in a locally non-compact metric space and for solutions of abstract evolution equations. The latter contain many initial boundary value problems for dissipative partial differential equations. This work, for which Ladyzhenskaya was awarded the Russian Academy of Sciences' Kovalevskaya Prize, reflects the high calibre of her lectures; it is essential reading for anyone interested in her approach to partial differential equations and dynamical systems. This edition, reissued for her centenary, includes a new technical introduction, written by Gregory A. Seregin, Varga K. Kalantarov and Sergey V. Zelik, surveying Ladyzhenskaya's works in the field and subsequent developments influenced by her results.
Attractors for Semigroups and Evolution Equations
Title | Attractors for Semigroups and Evolution Equations PDF eBook |
Author | Olga A. Ladyzhenskaya |
Publisher | Cambridge University Press |
Pages | 97 |
Release | 2022-06-09 |
Genre | Mathematics |
ISBN | 1009229826 |
First published 1992; Re-issued 2008; Reprinted with Introduction 2022.
Attractors of Evolution Equations
Title | Attractors of Evolution Equations PDF eBook |
Author | A.V. Babin |
Publisher | Elsevier |
Pages | 543 |
Release | 1992-03-09 |
Genre | Mathematics |
ISBN | 0080875467 |
Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.
Attractors for Equations of Mathematical Physics
Title | Attractors for Equations of Mathematical Physics PDF eBook |
Author | Vladimir V. Chepyzhov |
Publisher | American Mathematical Soc. |
Pages | 377 |
Release | 2002 |
Genre | Mathematics |
ISBN | 0821829505 |
One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.
Evolution Equations and Approximations
Title | Evolution Equations and Approximations PDF eBook |
Author | Kazufumi Ito |
Publisher | World Scientific |
Pages | 524 |
Release | 2002 |
Genre | Science |
ISBN | 9789812380265 |
Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR
Evolution Equations, Semigroups and Functional Analysis
Title | Evolution Equations, Semigroups and Functional Analysis PDF eBook |
Author | Alfredo Lorenzi |
Publisher | Birkhäuser |
Pages | 404 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3034882211 |
Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi.
Evolution Equations, Semigroups and Functional Analysis
Title | Evolution Equations, Semigroups and Functional Analysis PDF eBook |
Author | Brunello Terreni |
Publisher | Springer Science & Business Media |
Pages | 426 |
Release | 2002 |
Genre | Mathematics |
ISBN | 9783764367916 |
Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi