The Atiyah-Patodi-Singer Index Theorem

The Atiyah-Patodi-Singer Index Theorem
Title The Atiyah-Patodi-Singer Index Theorem PDF eBook
Author Richard Melrose
Publisher CRC Press
Pages 392
Release 1993-03-31
Genre Mathematics
ISBN 1439864608

Download The Atiyah-Patodi-Singer Index Theorem Book in PDF, Epub and Kindle

Based on the lecture notes of a graduate course given at MIT, this sophisticated treatment leads to a variety of current research topics and will undoubtedly serve as a guide to further studies.

Mathematical Reviews

Mathematical Reviews
Title Mathematical Reviews PDF eBook
Author
Publisher
Pages 888
Release 2008
Genre Mathematics
ISBN

Download Mathematical Reviews Book in PDF, Epub and Kindle

Rendiconti di matematica e delle sue applicazioni

Rendiconti di matematica e delle sue applicazioni
Title Rendiconti di matematica e delle sue applicazioni PDF eBook
Author Università degli studi di Roma "La Sapienza." Dipartimento di matematica
Publisher
Pages 812
Release 1998
Genre Mathematics
ISBN

Download Rendiconti di matematica e delle sue applicazioni Book in PDF, Epub and Kindle

Notes on Seiberg-Witten Theory

Notes on Seiberg-Witten Theory
Title Notes on Seiberg-Witten Theory PDF eBook
Author Liviu I. Nicolaescu
Publisher American Mathematical Soc.
Pages 504
Release 2000
Genre Mathematics
ISBN 0821821458

Download Notes on Seiberg-Witten Theory Book in PDF, Epub and Kindle

After background on elliptic equations, Clifford algebras, Dirac operators, and Fredholm theory, chapters introduce solutions of the Seiberg-Witten equations and the group of gauge transformations, then look at algebraic surfaces. A final chapter presents in great detail a cut-and-paste technique for computing Seiberg-Witten invariants, covering elliptic equations on manifolds with cylindrical ends, finite energy monopoles on cylindrical manifolds, local and global properties of the moduli spaces of finite energy monopoles, and the process of reconstructing the space of monopoles on a 4-manifold decomposed into several parts by a hypersurface. Annotation copyrighted by Book News, Inc., Portland, OR.

Elliptic Boundary Problems for Dirac Operators

Elliptic Boundary Problems for Dirac Operators
Title Elliptic Boundary Problems for Dirac Operators PDF eBook
Author Bernhelm Booß-Bavnbek
Publisher Springer Science & Business Media
Pages 322
Release 2012-12-06
Genre Mathematics
ISBN 1461203376

Download Elliptic Boundary Problems for Dirac Operators Book in PDF, Epub and Kindle

Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.

Lectures on Field Theory and Topology

Lectures on Field Theory and Topology
Title Lectures on Field Theory and Topology PDF eBook
Author Daniel S. Freed
Publisher American Mathematical Soc.
Pages 202
Release 2019-08-23
Genre Mathematics
ISBN 1470452065

Download Lectures on Field Theory and Topology Book in PDF, Epub and Kindle

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Exotic Smoothness And Physics: Differential Topology And Spacetime Models

Exotic Smoothness And Physics: Differential Topology And Spacetime Models
Title Exotic Smoothness And Physics: Differential Topology And Spacetime Models PDF eBook
Author Torsten Asselmeyer-maluga
Publisher World Scientific
Pages 339
Release 2007-01-23
Genre Science
ISBN 9814493740

Download Exotic Smoothness And Physics: Differential Topology And Spacetime Models Book in PDF, Epub and Kindle

The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.