The Atiyah-Patodi-Singer Index Theorem
Title | The Atiyah-Patodi-Singer Index Theorem PDF eBook |
Author | Richard Melrose |
Publisher | CRC Press |
Pages | 392 |
Release | 1993-03-31 |
Genre | Mathematics |
ISBN | 1439864608 |
Based on the lecture notes of a graduate course given at MIT, this sophisticated treatment leads to a variety of current research topics and will undoubtedly serve as a guide to further studies.
Mathematical Reviews
Title | Mathematical Reviews PDF eBook |
Author | |
Publisher | |
Pages | 964 |
Release | 2002 |
Genre | Mathematics |
ISBN |
Rendiconti di matematica e delle sue applicazioni
Title | Rendiconti di matematica e delle sue applicazioni PDF eBook |
Author | Università degli studi di Roma "La Sapienza." Dipartimento di matematica |
Publisher | |
Pages | 812 |
Release | 1998 |
Genre | Mathematics |
ISBN |
Notes on Seiberg-Witten Theory
Title | Notes on Seiberg-Witten Theory PDF eBook |
Author | Liviu I. Nicolaescu |
Publisher | American Mathematical Soc. |
Pages | 504 |
Release | 2000 |
Genre | Mathematics |
ISBN | 0821821458 |
After background on elliptic equations, Clifford algebras, Dirac operators, and Fredholm theory, chapters introduce solutions of the Seiberg-Witten equations and the group of gauge transformations, then look at algebraic surfaces. A final chapter presents in great detail a cut-and-paste technique for computing Seiberg-Witten invariants, covering elliptic equations on manifolds with cylindrical ends, finite energy monopoles on cylindrical manifolds, local and global properties of the moduli spaces of finite energy monopoles, and the process of reconstructing the space of monopoles on a 4-manifold decomposed into several parts by a hypersurface. Annotation copyrighted by Book News, Inc., Portland, OR.
Lectures on Field Theory and Topology
Title | Lectures on Field Theory and Topology PDF eBook |
Author | Daniel S. Freed |
Publisher | American Mathematical Soc. |
Pages | 202 |
Release | 2019-08-23 |
Genre | Mathematics |
ISBN | 1470452065 |
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Elliptic Boundary Problems for Dirac Operators
Title | Elliptic Boundary Problems for Dirac Operators PDF eBook |
Author | Bernhelm Booß-Bavnbek |
Publisher | Springer Science & Business Media |
Pages | 322 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461203376 |
Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.
Exotic Smoothness And Physics: Differential Topology And Spacetime Models
Title | Exotic Smoothness And Physics: Differential Topology And Spacetime Models PDF eBook |
Author | Torsten Asselmeyer-maluga |
Publisher | World Scientific |
Pages | 339 |
Release | 2007-01-23 |
Genre | Science |
ISBN | 9814493740 |
The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.