Asymptotic Expansions of Integrals

Asymptotic Expansions of Integrals
Title Asymptotic Expansions of Integrals PDF eBook
Author Norman Bleistein
Publisher Courier Corporation
Pages 453
Release 1986-01-01
Genre Mathematics
ISBN 0486650820

Download Asymptotic Expansions of Integrals Book in PDF, Epub and Kindle

Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.

Asymptotic Approximations of Integrals

Asymptotic Approximations of Integrals
Title Asymptotic Approximations of Integrals PDF eBook
Author R. Wong
Publisher Academic Press
Pages 561
Release 2014-05-10
Genre Mathematics
ISBN 1483220710

Download Asymptotic Approximations of Integrals Book in PDF, Epub and Kindle

Asymptotic Approximations of Integrals deals with the methods used in the asymptotic approximation of integrals. Topics covered range from logarithmic singularities and the summability method to the distributional approach and the Mellin transform technique for multiple integrals. Uniform asymptotic expansions via a rational transformation are also discussed, along with double integrals with a curve of stationary points. For completeness, classical methods are examined as well. Comprised of nine chapters, this volume begins with an introduction to the fundamental concepts of asymptotics, followed by a discussion on classical techniques used in the asymptotic evaluation of integrals, including Laplace's method, Mellin transform techniques, and the summability method. Subsequent chapters focus on the elementary theory of distributions; the distributional approach; uniform asymptotic expansions; and integrals which depend on auxiliary parameters in addition to the asymptotic variable. The book concludes by considering double integrals and higher-dimensional integrals. This monograph is intended for graduate students and research workers in mathematics, physics, and engineering.

Asymptotic Methods for Integrals

Asymptotic Methods for Integrals
Title Asymptotic Methods for Integrals PDF eBook
Author Nico M. Temme
Publisher World Scientific Publishing Company
Pages 0
Release 2015
Genre Differential equations
ISBN 9789814612159

Download Asymptotic Methods for Integrals Book in PDF, Epub and Kindle

This book gives introductory chapters on the classical basic and standard methods for asymptotic analysis, such as Watson's lemma, Laplace's method, the saddle point and steepest descent methods, stationary phase and Darboux's method. The methods, explained in great detail, will obtain asymptotic approximations of the well-known special functions of mathematical physics and probability theory. After these introductory chapters, the methods of uniform asymptotic analysis are described in which several parameters have influence on typical phenomena: turning points and transition points, coinciding saddle and singularities. In all these examples, the special functions are indicated that describe the peculiar behavior of the integrals. The text extensively covers the classical methods with an emphasis on how to obtain expansions, and how to use the results for numerical methods, in particular for approximating special functions. In this way, we work with a computational mind: how can we use certain expansions in numerical analysis and in computer programs, how can we compute coefficients, and so on.

Asymptotic Expansions

Asymptotic Expansions
Title Asymptotic Expansions PDF eBook
Author E. T. Copson
Publisher Cambridge University Press
Pages 136
Release 2004-06-03
Genre Mathematics
ISBN 9780521604826

Download Asymptotic Expansions Book in PDF, Epub and Kindle

Asymptotic representation of a function os of great importance in many branches of pure and applied mathematics.

Applied Asymptotic Analysis

Applied Asymptotic Analysis
Title Applied Asymptotic Analysis PDF eBook
Author Peter David Miller
Publisher American Mathematical Soc.
Pages 488
Release 2006
Genre Mathematics
ISBN 0821840789

Download Applied Asymptotic Analysis Book in PDF, Epub and Kindle

This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entirenonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary. The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and appliedmathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is knownas the Courant point of view!! --Percy Deift, Courant Institute, New York Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian NationalUniversity (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.

Computing Highly Oscillatory Integrals

Computing Highly Oscillatory Integrals
Title Computing Highly Oscillatory Integrals PDF eBook
Author Alfredo Deano
Publisher SIAM
Pages 207
Release 2018-01-01
Genre Mathematics
ISBN 1611975123

Download Computing Highly Oscillatory Integrals Book in PDF, Epub and Kindle

Highly oscillatory phenomena range across numerous areas in science and engineering and their computation represents a difficult challenge. A case in point is integrals of rapidly oscillating functions in one or more variables. The quadrature of such integrals has been historically considered very demanding. Research in the past 15 years (in which the authors played a major role) resulted in a range of very effective and affordable algorithms for highly oscillatory quadrature. This is the only monograph bringing together the new body of ideas in this area in its entirety. The starting point is that approximations need to be analyzed using asymptotic methods rather than by more standard polynomial expansions. As often happens in computational mathematics, once a phenomenon is understood from a mathematical standpoint, effective algorithms follow. As reviewed in this monograph, we now have at our disposal a number of very effective quadrature methods for highly oscillatory integrals--Filon-type and Levin-type methods, methods based on steepest descent, and complex-valued Gaussian quadrature. Their understanding calls for a fairly varied mathematical toolbox--from classical numerical analysis, approximation theory, and theory of orthogonal polynomials all the way to asymptotic analysis--yet this understanding is the cornerstone of efficient algorithms.

Asymptotic Methods For Integrals

Asymptotic Methods For Integrals
Title Asymptotic Methods For Integrals PDF eBook
Author Nico M Temme
Publisher World Scientific
Pages 628
Release 2014-10-31
Genre Mathematics
ISBN 9814612170

Download Asymptotic Methods For Integrals Book in PDF, Epub and Kindle

This book gives introductory chapters on the classical basic and standard methods for asymptotic analysis, such as Watson's lemma, Laplace's method, the saddle point and steepest descent methods, stationary phase and Darboux's method. The methods, explained in great detail, will obtain asymptotic approximations of the well-known special functions of mathematical physics and probability theory. After these introductory chapters, the methods of uniform asymptotic analysis are described in which several parameters have influence on typical phenomena: turning points and transition points, coinciding saddle and singularities. In all these examples, the special functions are indicated that describe the peculiar behavior of the integrals.The text extensively covers the classical methods with an emphasis on how to obtain expansions, and how to use the results for numerical methods, in particular for approximating special functions. In this way, we work with a computational mind: how can we use certain expansions in numerical analysis and in computer programs, how can we compute coefficients, and so on.