Asymptotic Issues For Some Partial Differential Equations (Second Edition)

Asymptotic Issues For Some Partial Differential Equations (Second Edition)
Title Asymptotic Issues For Some Partial Differential Equations (Second Edition) PDF eBook
Author Michel Marie Chipot
Publisher World Scientific
Pages 283
Release 2024-04-15
Genre Mathematics
ISBN 9811290458

Download Asymptotic Issues For Some Partial Differential Equations (Second Edition) Book in PDF, Epub and Kindle

The primary focus of the book is to explore the asymptotic behavior of problems formulated within cylindrical structures. Various physical applications are discussed, with certain topics such as fluid flows in channels being particularly noteworthy. Additionally, the book delves into the relevance of elasticity in the context of cylindrical bodies.In specific scenarios where the size of the cylinder becomes exceptionally large, the material's behavior is determined solely by its cross-section. The investigation centers around understanding these particular properties.Since the publication of the first edition, several significant advancements have been made, adding depth and interest to the content. Consequently, new sections have been incorporated into the existing edition, complemented by a comprehensive list of references.

Partial Differential Equations V

Partial Differential Equations V
Title Partial Differential Equations V PDF eBook
Author M.V. Fedoryuk
Publisher Springer Science & Business Media
Pages 248
Release 2012-12-06
Genre Mathematics
ISBN 3642584233

Download Partial Differential Equations V Book in PDF, Epub and Kindle

In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution.

Partial Differential Equations

Partial Differential Equations
Title Partial Differential Equations PDF eBook
Author Walter A. Strauss
Publisher John Wiley & Sons
Pages 467
Release 2007-12-21
Genre Mathematics
ISBN 0470054565

Download Partial Differential Equations Book in PDF, Epub and Kindle

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Some Asymptotic Problems in the Theory of Partial Differential Equations

Some Asymptotic Problems in the Theory of Partial Differential Equations
Title Some Asymptotic Problems in the Theory of Partial Differential Equations PDF eBook
Author O. A. Oleĭnik
Publisher Cambridge University Press
Pages 218
Release 1996-03-21
Genre Mathematics
ISBN 9780521485371

Download Some Asymptotic Problems in the Theory of Partial Differential Equations Book in PDF, Epub and Kindle

In 1993, Professor Oleinik was invited to give a series of lectures about her work in the area of partial differential equations. This book contains those lectures, and more.

Markov Processes and Differential Equations

Markov Processes and Differential Equations
Title Markov Processes and Differential Equations PDF eBook
Author Mark I. Freidlin
Publisher Birkhäuser
Pages 155
Release 2012-12-06
Genre Mathematics
ISBN 3034891911

Download Markov Processes and Differential Equations Book in PDF, Epub and Kindle

Probabilistic methods can be applied very successfully to a number of asymptotic problems for second-order linear and non-linear partial differential equations. Due to the close connection between the second order differential operators with a non-negative characteristic form on the one hand and Markov processes on the other, many problems in PDE's can be reformulated as problems for corresponding stochastic processes and vice versa. In the present book four classes of problems are considered: - the Dirichlet problem with a small parameter in higher derivatives for differential equations and systems - the averaging principle for stochastic processes and PDE's - homogenization in PDE's and in stochastic processes - wave front propagation for semilinear differential equations and systems. From the probabilistic point of view, the first two topics concern random perturbations of dynamical systems. The third topic, homog- enization, is a natural problem for stochastic processes as well as for PDE's. Wave fronts in semilinear PDE's are interesting examples of pattern formation in reaction-diffusion equations. The text presents new results in probability theory and their applica- tion to the above problems. Various examples help the reader to understand the effects. Prerequisites are knowledge in probability theory and in partial differential equations.

Stochastic Partial Differential Equations, Second Edition

Stochastic Partial Differential Equations, Second Edition
Title Stochastic Partial Differential Equations, Second Edition PDF eBook
Author Pao-Liu Chow
Publisher CRC Press
Pages 336
Release 2014-12-10
Genre Mathematics
ISBN 1466579552

Download Stochastic Partial Differential Equations, Second Edition Book in PDF, Epub and Kindle

Explore Theory and Techniques to Solve Physical, Biological, and Financial Problems Since the first edition was published, there has been a surge of interest in stochastic partial differential equations (PDEs) driven by the Lévy type of noise. Stochastic Partial Differential Equations, Second Edition incorporates these recent developments and improves the presentation of material. New to the Second Edition Two sections on the Lévy type of stochastic integrals and the related stochastic differential equations in finite dimensions Discussions of Poisson random fields and related stochastic integrals, the solution of a stochastic heat equation with Poisson noise, and mild solutions to linear and nonlinear parabolic equations with Poisson noises Two sections on linear and semilinear wave equations driven by the Poisson type of noises Treatment of the Poisson stochastic integral in a Hilbert space and mild solutions of stochastic evolutions with Poisson noises Revised proofs and new theorems, such as explosive solutions of stochastic reaction diffusion equations Additional applications of stochastic PDEs to population biology and finance Updated section on parabolic equations and related elliptic problems in Gauss–Sobolev spaces The book covers basic theory as well as computational and analytical techniques to solve physical, biological, and financial problems. It first presents classical concrete problems before proceeding to a unified theory of stochastic evolution equations and describing applications, such as turbulence in fluid dynamics, a spatial population growth model in a random environment, and a stochastic model in bond market theory. The author also explores the connection of stochastic PDEs to infinite-dimensional stochastic analysis.

Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations

Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations
Title Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations PDF eBook
Author Ivan Kiguradze
Publisher Springer
Pages 331
Release 1992-11-30
Genre Mathematics
ISBN 079232059X

Download Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations Book in PDF, Epub and Kindle

This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations.