Asymptotic Geometric Analysis, Part II

Asymptotic Geometric Analysis, Part II
Title Asymptotic Geometric Analysis, Part II PDF eBook
Author Shiri Artstein-Avidan
Publisher American Mathematical Society
Pages 645
Release 2021-12-13
Genre Mathematics
ISBN 1470463601

Download Asymptotic Geometric Analysis, Part II Book in PDF, Epub and Kindle

This book is a continuation of Asymptotic Geometric Analysis, Part I, which was published as volume 202 in this series. Asymptotic geometric analysis studies properties of geometric objects, such as normed spaces, convex bodies, or convex functions, when the dimensions of these objects increase to infinity. The asymptotic approach reveals many very novel phenomena which influence other fields in mathematics, especially where a large data set is of main concern, or a number of parameters which becomes uncontrollably large. One of the important features of this new theory is in developing tools which allow studying high parametric families. Among the topics covered in the book are measure concentration, isoperimetric constants of log-concave measures, thin-shell estimates, stochastic localization, the geometry of Gaussian measures, volume inequalities for convex bodies, local theory of Banach spaces, type and cotype, the Banach-Mazur compactum, symmetrizations, restricted invertibility, and functional versions of geometric notions and inequalities.

Asymptotic Geometric Analysis, Part I

Asymptotic Geometric Analysis, Part I
Title Asymptotic Geometric Analysis, Part I PDF eBook
Author Shiri Artstein-Avidan
Publisher American Mathematical Soc.
Pages 473
Release 2015-06-18
Genre Mathematics
ISBN 1470421933

Download Asymptotic Geometric Analysis, Part I Book in PDF, Epub and Kindle

The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.

Alice and Bob Meet Banach

Alice and Bob Meet Banach
Title Alice and Bob Meet Banach PDF eBook
Author Guillaume Aubrun
Publisher American Mathematical Society
Pages 439
Release 2024-07-29
Genre Mathematics
ISBN 1470477963

Download Alice and Bob Meet Banach Book in PDF, Epub and Kindle

The quest to build a quantum computer is arguably one of the major scientific and technological challenges of the twenty-first century, and quantum information theory (QIT) provides the mathematical framework for that quest. Over the last dozen or so years, it has become clear that quantum information theory is closely linked to geometric functional analysis (Banach space theory, operator spaces, high-dimensional probability), a field also known as asymptotic geometric analysis (AGA). In a nutshell, asymptotic geometric analysis investigates quantitative properties of convex sets, or other geometric structures, and their approximate symmetries as the dimension becomes large. This makes it especially relevant to quantum theory, where systems consisting of just a few particles naturally lead to models whose dimension is in the thousands, or even in the billions. Alice and Bob Meet Banach is aimed at multiple audiences connected through their interest in the interface of QIT and AGA: at quantum information researchers who want to learn AGA or apply its tools; at mathematicians interested in learning QIT, or at least the part of QIT that is relevant to functional analysis/convex geometry/random matrix theory and related areas; and at beginning researchers in either field. Moreover, this user-friendly book contains numerous tables and explicit estimates, with reasonable constants when possible, which make it a useful reference even for established mathematicians generally familiar with the subject.

Asymptotic Geometric Analysis

Asymptotic Geometric Analysis
Title Asymptotic Geometric Analysis PDF eBook
Author Monika Ludwig
Publisher Springer Science & Business Media
Pages 402
Release 2013-03-27
Genre Mathematics
ISBN 1461464064

Download Asymptotic Geometric Analysis Book in PDF, Epub and Kindle

Asymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included: * Asymptotic theory of convexity and normed spaces * Concentration of measure and isoperimetric inequalities, optimal transportation approach * Applications of the concept of concentration * Connections with transformation groups and Ramsey theory * Geometrization of probability * Random matrices * Connection with asymptotic combinatorics and complexity theory These directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences—in particular functional analysis, combinatorics, convex geometry, dynamical systems, operator algebras, and computer science.

Geometric Asymptotics

Geometric Asymptotics
Title Geometric Asymptotics PDF eBook
Author Victor Guillemin
Publisher American Mathematical Soc.
Pages 500
Release 1990
Genre Mathematics
ISBN 0821816330

Download Geometric Asymptotics Book in PDF, Epub and Kindle

Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.

Harmonic Analysis and Convexity

Harmonic Analysis and Convexity
Title Harmonic Analysis and Convexity PDF eBook
Author Alexander Koldobsky
Publisher Walter de Gruyter GmbH & Co KG
Pages 480
Release 2023-07-24
Genre Mathematics
ISBN 3110775387

Download Harmonic Analysis and Convexity Book in PDF, Epub and Kindle

In recent years, the interaction between harmonic analysis and convex geometry has increased which has resulted in solutions to several long-standing problems. This collection is based on the topics discussed during the Research Semester on Harmonic Analysis and Convexity at the Institute for Computational and Experimental Research in Mathematics in Providence RI in Fall 2022. The volume brings together experts working in related fields to report on the status of major problems in the area including the isomorphic Busemann-Petty and slicing problems for arbitrary measures, extremal problems for Fourier extension and extremal problems for classical singular integrals of martingale type, among others.

Convex Geometry

Convex Geometry
Title Convex Geometry PDF eBook
Author Shiri Artstein-Avidan
Publisher Springer Nature
Pages 304
Release 2023-12-13
Genre Mathematics
ISBN 3031378830

Download Convex Geometry Book in PDF, Epub and Kindle

This book collects the lecture notes of the Summer School on Convex Geometry, held in Cetraro, Italy, from August 30th to September 3rd, 2021. Convex geometry is a very active area in mathematics with a solid tradition and a promising future. Its main objects of study are convex bodies, that is, compact and convex subsets of n-dimensional Euclidean space. The so-called Brunn--Minkowski theory currently represents the central part of convex geometry. The Summer School provided an introduction to various aspects of convex geometry: The theory of valuations, including its recent developments concerning valuations on function spaces; geometric and analytic inequalities, including those which come from the Lp Brunn--Minkowski theory; geometric and analytic notions of duality, along with their interplay with mass transportation and concentration phenomena; symmetrizations, which provide one of the main tools to many variational problems (not only in convex geometry). Each of these parts is represented by one of the courses given during the Summer School and corresponds to one of the chapters of the present volume. The initial chapter contains some basic notions in convex geometry, which form a common background for the subsequent chapters. The material of this book is essentially self-contained and, like the Summer School, is addressed to PhD and post-doctoral students and to all researchers approaching convex geometry for the first time.