Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations
Title | Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations PDF eBook |
Author | Farah Kanbar |
Publisher | BoD – Books on Demand |
Pages | 154 |
Release | 2023-05-09 |
Genre | Mathematics |
ISBN | 3958262104 |
In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.
High Order Nonlinear Numerical Schemes for Evolutionary PDEs
Title | High Order Nonlinear Numerical Schemes for Evolutionary PDEs PDF eBook |
Author | Rémi Abgrall |
Publisher | Springer |
Pages | 220 |
Release | 2014-05-19 |
Genre | Mathematics |
ISBN | 3319054554 |
This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.
Discontinuous Galerkin Methods
Title | Discontinuous Galerkin Methods PDF eBook |
Author | Bernardo Cockburn |
Publisher | Springer Science & Business Media |
Pages | 468 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642597211 |
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Mathematical Reviews
Title | Mathematical Reviews PDF eBook |
Author | |
Publisher | |
Pages | 1432 |
Release | 2003 |
Genre | Mathematics |
ISBN |
Partial Differential Equations in Action
Title | Partial Differential Equations in Action PDF eBook |
Author | Sandro Salsa |
Publisher | Springer |
Pages | 714 |
Release | 2015-04-24 |
Genre | Mathematics |
ISBN | 3319150936 |
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Transport Equations in Biology
Title | Transport Equations in Biology PDF eBook |
Author | Benoît Perthame |
Publisher | Springer Science & Business Media |
Pages | 206 |
Release | 2006-12-14 |
Genre | Science |
ISBN | 3764378425 |
This book presents models written as partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptive dynamics, and bacterial movement. Its purpose is to derive appropriate mathematical tools and qualitative properties of the solutions. The book further contains many original PDE problems originating in biosciences.
Lattice Boltzmann Method And Its Application In Engineering
Title | Lattice Boltzmann Method And Its Application In Engineering PDF eBook |
Author | Zhaoli Guo |
Publisher | World Scientific |
Pages | 419 |
Release | 2013-03-25 |
Genre | Technology & Engineering |
ISBN | 9814508314 |
Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.