Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations
Title | Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations PDF eBook |
Author | Grigorij Kulinich |
Publisher | Springer Nature |
Pages | 249 |
Release | 2020-04-29 |
Genre | Mathematics |
ISBN | 3030412911 |
This book is devoted to unstable solutions of stochastic differential equations (SDEs). Despite the huge interest in the theory of SDEs, this book is the first to present a systematic study of the instability and asymptotic behavior of the corresponding unstable stochastic systems. The limit theorems contained in the book are not merely of purely mathematical value; rather, they also have practical value. Instability or violations of stability are noted in many phenomena, and the authors attempt to apply mathematical and stochastic methods to deal with them. The main goals include exploration of Brownian motion in environments with anomalies and study of the motion of the Brownian particle in layered media. A fairly wide class of continuous Markov processes is obtained in the limit. It includes Markov processes with discontinuous transition densities, processes that are not solutions of any Itô's SDEs, and the Bessel diffusion process. The book is self-contained, with presentation of definitions and auxiliary results in an Appendix. It will be of value for specialists in stochastic analysis and SDEs, as well as for researchers in other fields who deal with unstable systems and practitioners who apply stochastic models to describe phenomena of instability.
Applied Stochastic Differential Equations
Title | Applied Stochastic Differential Equations PDF eBook |
Author | Simo Särkkä |
Publisher | Cambridge University Press |
Pages | 327 |
Release | 2019-05-02 |
Genre | Business & Economics |
ISBN | 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Probability Theory Subject Indexes from Mathematical Reviews
Title | Probability Theory Subject Indexes from Mathematical Reviews PDF eBook |
Author | American Mathematical Society |
Publisher | |
Pages | 492 |
Release | 1987 |
Genre | Mathematics |
ISBN |
Stochastic Differential Equations with Markovian Switching
Title | Stochastic Differential Equations with Markovian Switching PDF eBook |
Author | Xuerong Mao |
Publisher | Imperial College Press |
Pages | 430 |
Release | 2006 |
Genre | Mathematics |
ISBN | 1860947018 |
This textbook provides the first systematic presentation of the theory of stochastic differential equations with Markovian switching. It presents the basic principles at an introductory level but emphasizes current advanced level research trends. The material takes into account all the features of Ito equations, Markovian switching, interval systems and time-lag. The theory developed is applicable in different and complicated situations in many branches of science and industry.
An Introduction to Stochastic Differential Equations
Title | An Introduction to Stochastic Differential Equations PDF eBook |
Author | Lawrence C. Evans |
Publisher | American Mathematical Soc. |
Pages | 161 |
Release | 2012-12-11 |
Genre | Mathematics |
ISBN | 1470410540 |
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations
Title | Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations PDF eBook |
Author | Anatoliy M. Samoilenko |
Publisher | World Scientific |
Pages | 323 |
Release | 2011 |
Genre | Mathematics |
ISBN | 981432907X |
1. Differential equations with random right-hand sides and impulsive effects. 1.1. An impulsive process as a solution of an impulsive system. 1.2. Dissipativity. 1.3. Stability and Lyapunov functions. 1.4. Stability of systems with permanently acting random perturbations. 1.5. Solutions periodic in the restricted sense. 1.6. Periodic solutions of systems with small perturbations. 1.7. Periodic solutions of linear impulsive systems. 1.8. Weakly nonlinear systems. 1.9. Comments and references -- 2. Invariant sets for systems with random perturbations. 2.1. Invariant sets for systems with random right-hand sides. 2.2. Invariant sets for stochastic Ito systems. 2.3. The behaviour of invariant sets under small perturbations. 2.4. A study of stability of an equilibrium via the reduction principle for systems with regular random perturbations. 2.5. Stability of an equilibrium and the reduction principle for Ito type systems. 2.6. A study of stability of the invariant set via the reduction principle. Regular perturbations. 2.7. Stability of invariant sets and the reduction principle for Ito type systems. 2.8. Comments and references -- 3. Linear and quasilinear stochastic Ito systems. 3.1. Mean square exponential dichotomy. 3.2. A study of dichotomy in terms of quadratic forms. 3.3. Linear system solutions that are mean square bounded on the semiaxis. 3.4. Quasilinear systems. 3.5. Linear system solutions that are probability bounded on the axis. A generalized notion of a solution. 3.6. Asymptotic equivalence of linear systems. 3.7. Conditions for asymptotic equivalence of nonlinear systems. 3.8. Comments and references -- 4. Extensions of Ito systems on a torus. 4.1. Stability of invariant tori. 4.2. Random invariant tori for linear extensions. 4.3. Smoothness of invariant tori. 4.4. Random invariant tori for nonlinear extensions. 4.5. An ergodic theorem for a class of stochastic systems having a toroidal manifold. 4.6. Comments and references -- 5. The averaging method for equations with random perturbations. 5.1. A substantiation of the averaging method for systems with impulsive effect. 5.2. Asymptotics of normalized deviations of averaged solutions. 5.3. Applications to the theory of nonlinear oscillations. 5.4. Averaging for systems with impulsive effects at random times. 5.5. The second theorem of M.M. Bogolyubov for systems with regular random perturbations. 5.6. Averaging for stochastic Ito systems. An asymptotically finite interval. 5.7. Averaging on the semiaxis. 5.8. The averaging method and two-sided bounded solutions of Ito systems. 5.9. Comments and references
Dynamical Systems
Title | Dynamical Systems PDF eBook |
Author | S.-N. Chow |
Publisher | Springer |
Pages | 362 |
Release | 2003-12-10 |
Genre | Mathematics |
ISBN | 3540452044 |
The C.I.M.E. session on Dynamical Systems, held in Cetraro (Italy), June 19-26, 2000, focused on the latest developments in several important areas in dynamical systems, with full development and historical context. The lectures of Chow and Mallet-Paret focus on the area of lattice differential systems, the lectures of Conto and Galleotti treat the classical problem of classification of orbits for two-dimensional autonomous systems with polynomial right sides, the lectures of Nussbaum focus on applications of fixed point theorems to the problem of limiting profiles for the solutions of singular perturbations of delay differential equations, and the lectures of Johnson and Mantellini deal with the existence of periodic and quasi-periodic orbits to non-autonomous systems. The volume will be of interest to researchers and graduate students working in these areas.