Asymptotic, Algebraic and Geometric Aspects of Integrable Systems

Asymptotic, Algebraic and Geometric Aspects of Integrable Systems
Title Asymptotic, Algebraic and Geometric Aspects of Integrable Systems PDF eBook
Author Frank Nijhoff
Publisher Springer Nature
Pages 240
Release 2020-10-23
Genre Mathematics
ISBN 3030570002

Download Asymptotic, Algebraic and Geometric Aspects of Integrable Systems Book in PDF, Epub and Kindle

This proceedings volume gathers together selected works from the 2018 “Asymptotic, Algebraic and Geometric Aspects of Integrable Systems” workshop that was held at TSIMF Yau Mathematical Sciences Center in Sanya, China, honoring Nalini Joshi on her 60th birthday. The papers cover recent advances in asymptotic, algebraic and geometric methods in the study of discrete integrable systems. The workshop brought together experts from fields such as asymptotic analysis, representation theory and geometry, creating a platform to exchange current methods, results and novel ideas. This volume's articles reflect these exchanges and can be of special interest to a diverse group of researchers and graduate students interested in learning about current results, new approaches and trends in mathematical physics, in particular those relevant to discrete integrable systems.

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices
Title Algebraic and Geometric Aspects of Integrable Systems and Random Matrices PDF eBook
Author Anton Dzhamay
Publisher American Mathematical Soc.
Pages 363
Release 2013-06-26
Genre Mathematics
ISBN 0821887475

Download Algebraic and Geometric Aspects of Integrable Systems and Random Matrices Book in PDF, Epub and Kindle

This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, held from January 6-7, 2012, in Boston, MA. The very wide range of topics represented in this volume illustrates

Integrable Systems and Algebraic Geometry

Integrable Systems and Algebraic Geometry
Title Integrable Systems and Algebraic Geometry PDF eBook
Author Ron Donagi
Publisher Cambridge University Press
Pages 421
Release 2020-04-02
Genre Mathematics
ISBN 1108715745

Download Integrable Systems and Algebraic Geometry Book in PDF, Epub and Kindle

A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.

Asymptotic Combinatorics with Application to Mathematical Physics

Asymptotic Combinatorics with Application to Mathematical Physics
Title Asymptotic Combinatorics with Application to Mathematical Physics PDF eBook
Author V.A. Malyshev
Publisher Springer Science & Business Media
Pages 335
Release 2012-12-06
Genre Science
ISBN 9401005753

Download Asymptotic Combinatorics with Application to Mathematical Physics Book in PDF, Epub and Kindle

New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.

Mathematics Unlimited - 2001 and Beyond

Mathematics Unlimited - 2001 and Beyond
Title Mathematics Unlimited - 2001 and Beyond PDF eBook
Author Björn Engquist
Publisher Springer
Pages 1219
Release 2017-04-05
Genre Mathematics
ISBN 364256478X

Download Mathematics Unlimited - 2001 and Beyond Book in PDF, Epub and Kindle

This is a book guaranteed to delight the reader. It not only depicts the state of mathematics at the end of the century, but is also full of remarkable insights into its future de- velopment as we enter a new millennium. True to its title, the book extends beyond the spectrum of mathematics to in- clude contributions from other related sciences. You will enjoy reading the many stimulating contributions and gain insights into the astounding progress of mathematics and the perspectives for its future. One of the editors, Björn Eng- quist, is a world-renowned researcher in computational sci- ence and engineering. The second editor, Wilfried Schmid, is a distinguished mathematician at Harvard University. Likewi- se the authors are all foremost mathematicians and scien- tists, and their biographies and photographs appear at the end of the book. Unique in both form and content, this is a "must-read" for every mathematician and scientist and, in particular, for graduates still choosing their specialty. Limited collector's edition - an exclusive and timeless work. This special, numbered edition will be available until June 1, 2000. Firm orders only.

Surveys in Combinatorics 2022

Surveys in Combinatorics 2022
Title Surveys in Combinatorics 2022 PDF eBook
Author Anthony Nixon
Publisher Cambridge University Press
Pages 257
Release 2022-06-09
Genre Mathematics
ISBN 1009096222

Download Surveys in Combinatorics 2022 Book in PDF, Epub and Kindle

This volume contains surveys of current research directions in combinatorics written by leading researchers in their fields.

C∞-Algebraic Geometry with Corners

C∞-Algebraic Geometry with Corners
Title C∞-Algebraic Geometry with Corners PDF eBook
Author Kelli Francis-Staite
Publisher Cambridge University Press
Pages 224
Release 2023-12-31
Genre Mathematics
ISBN 1009400207

Download C∞-Algebraic Geometry with Corners Book in PDF, Epub and Kindle

Schemes in algebraic geometry can have singular points, whereas differential geometers typically focus on manifolds which are nonsingular. However, there is a class of schemes, 'C∞-schemes', which allow differential geometers to study a huge range of singular spaces, including 'infinitesimals' and infinite-dimensional spaces. These are applied in synthetic differential geometry, and derived differential geometry, the study of 'derived manifolds'. Differential geometers also study manifolds with corners. The cube is a 3-dimensional manifold with corners, with boundary the six square faces. This book introduces 'C∞-schemes with corners', singular spaces in differential geometry with good notions of boundary and corners. They can be used to define 'derived manifolds with corners' and 'derived orbifolds with corners'. These have applications to major areas of symplectic geometry involving moduli spaces of J-holomorphic curves. This work will be a welcome source of information and inspiration for graduate students and researchers working in differential or algebraic geometry.